weka.classifiers.bayes.NaiveBayesMultinomialUpdateable Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* NaiveBayesMultinomialUpdateable.java
* Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
* Copyright (C) 2007 Jiang Su (incremental version)
*/
package weka.classifiers.bayes;
import weka.classifiers.UpdateableClassifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for building and using a multinomial Naive Bayes classifier. For more information see,
*
* Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document.
*
* Incremental version of the algorithm.
*
*
* BibTeX:
*
* @inproceedings{Mccallum1998,
* author = {Andrew Mccallum and Kamal Nigam},
* booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'},
* title = {A Comparison of Event Models for Naive Bayes Text Classification},
* year = {1998}
* }
*
*
*
* Valid options are:
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Andrew Golightly ([email protected])
* @author Bernhard Pfahringer ([email protected])
* @author Jiang Su
* @version $Revision: 1.3 $
*/
public class NaiveBayesMultinomialUpdateable
extends NaiveBayesMultinomial
implements UpdateableClassifier {
/** for serialization */
private static final long serialVersionUID = -7204398796974263186L;
/** the word count per class */
protected double[] m_wordsPerClass;
/**
* Returns a string describing this classifier
*
* @return a description of the classifier suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
super.globalInfo() + "\n\n"
+ "Incremental version of the algorithm.";
}
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances instances) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(instances);
// remove instances with missing class
instances = new Instances(instances);
instances.deleteWithMissingClass();
m_headerInfo = new Instances(instances, 0);
m_numClasses = instances.numClasses();
m_numAttributes = instances.numAttributes();
m_probOfWordGivenClass = new double[m_numClasses][];
m_wordsPerClass = new double[m_numClasses];
m_probOfClass = new double[m_numClasses];
// initialising the matrix of word counts
// NOTE: Laplace estimator introduced in case a word that does not
// appear for a class in the training set does so for the test set
double laplace = 1;
for (int c = 0; c < m_numClasses; c++) {
m_probOfWordGivenClass[c] = new double[m_numAttributes];
m_probOfClass[c] = laplace;
m_wordsPerClass[c] = laplace * m_numAttributes;
for(int att = 0; att
© 2015 - 2025 Weber Informatics LLC | Privacy Policy