All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.NaiveBayesUpdateable Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    NaiveBayesUpdateable.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.bayes;

import weka.classifiers.UpdateableClassifier;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;

/**
 
 * Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.
* This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.
*
* For more information on Naive Bayes classifiers, see
*
* George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995. *

* * BibTeX: *

 * @inproceedings{John1995,
 *    address = {San Mateo},
 *    author = {George H. John and Pat Langley},
 *    booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence},
 *    pages = {338-345},
 *    publisher = {Morgan Kaufmann},
 *    title = {Estimating Continuous Distributions in Bayesian Classifiers},
 *    year = {1995}
 * }
 * 
*

* * Valid options are:

* *

 -K
 *  Use kernel density estimator rather than normal
 *  distribution for numeric attributes
* *
 -D
 *  Use supervised discretization to process numeric attributes
 * 
* *
 -O
 *  Display model in old format (good when there are many classes)
 * 
* * * @author Len Trigg ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 1.11 $ */ public class NaiveBayesUpdateable extends NaiveBayes implements UpdateableClassifier { /** for serialization */ static final long serialVersionUID = -5354015843807192221L; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for a Naive Bayes classifier using estimator classes. This is the " +"updateable version of NaiveBayes.\n" +"This classifier will use a default precision of 0.1 for numeric attributes " +"when buildClassifier is called with zero training instances.\n\n" +"For more information on Naive Bayes classifiers, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { return super.getTechnicalInformation(); } /** * Set whether supervised discretization is to be used. * * @param newblah true if supervised discretization is to be used. */ public void setUseSupervisedDiscretization(boolean newblah) { if (newblah) { throw new IllegalArgumentException("Can't use discretization " + "in NaiveBayesUpdateable!"); } m_UseDiscretization = false; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.11 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new NaiveBayesUpdateable(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy