All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.blr.LaplacePriorImpl Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    GaussianPrior.java
 *    Copyright (C) 2008 Illinois Institute of Technology
 *
 */
package weka.classifiers.bayes.blr;

import weka.classifiers.bayes.BayesianLogisticRegression;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;

/**
 * Implementation of the Gaussian Prior update function based on modified
 *  CLG Algorithm (CLG-Lasso) with a certain Trust Region Update based
 * on Laplace Priors.
 *
 * @author Navendu Garg([email protected])
 * @version $Revision: 1.2 $
 */
public class LaplacePriorImpl
  extends Prior {
  
  /** for serialization. */
  private static final long serialVersionUID = 2353576123257012607L;
  
  Instances m_Instances;
  double Beta;
  double Hyperparameter;
  double DeltaUpdate;
  double[] R;
  double Delta;

  /**
   * Update function specific to Laplace Prior.
   */
  public double update(int j, Instances instances, double beta,
    double hyperparameter, double[] r, double deltaV) {
    double sign = 0.0;
    double change = 0.0;
    DeltaUpdate = 0.0;
    m_Instances = instances;
    Beta = beta;
    Hyperparameter = hyperparameter;
    R = r;
    Delta = deltaV;

    if (Beta == 0) {
      sign = 1.0;
      DeltaUpdate = laplaceUpdate(j, sign);

      if (DeltaUpdate <= 0.0) { // positive direction failed.
        sign = -1.0;
        DeltaUpdate = laplaceUpdate(j, sign);

        if (DeltaUpdate >= 0.0) {
          DeltaUpdate = 0;
        }
      }
    } else {
      sign = Beta / Math.abs(Beta);
      DeltaUpdate = laplaceUpdate(j, sign);
      change = Beta + DeltaUpdate;
      change = change / Math.abs(change);

      if (change < 0) {
        DeltaUpdate = 0 - Beta;
      }
    }

    return DeltaUpdate;
  }

  /**
   * This is the CLG-lasso update function described in the

  *
  * @TechReport{blrtext04,
  *author = {Alexander Genkin and David D. Lewis and David Madigan},
  *title = {Large-scale bayesian logistic regression for text categorization},
  *institution = {DIMACS},
  *year = {2004},
  *url = "http://www.stat.rutgers.edu/~madigan/PAPERS/shortFat-v3a.pdf",
  *OPTannote = {}
  *}
* * @param j * @return double value */ public double laplaceUpdate(int j, double sign) { double value = 0.0; double numerator = 0.0; double denominator = 0.0; Instance instance; for (int i = 0; i < m_Instances.numInstances(); i++) { instance = m_Instances.instance(i); if (instance.value(j) != 0) { numerator += (instance.value(j) * BayesianLogisticRegression.classSgn(instance.classValue()) * (1.0 / (1.0 + Math.exp(R[i])))); denominator += (instance.value(j) * instance.value(j) * BayesianLogisticRegression.bigF(R[i], Delta * instance.value(j))); } } numerator -= (Math.sqrt(2.0 / Hyperparameter) * sign); if (denominator != 0.0) { value = numerator / denominator; } return value; } /** * Computes the log-likelihood values using the implementation in the Prior class. * @param betas * @param instances * @param hyperparameter */ public void computeLogLikelihood(double[] betas, Instances instances) { //Basic implementation done in the prior class. super.computelogLikelihood(betas, instances); } /** * This function computes the penalty term specific to Laplacian distribution. * @param betas * @param hyperparameters */ public void computePenalty(double[] betas, double[] hyperparameters) { penalty = 0.0; double lambda = 0.0; for (int j = 0; j < betas.length; j++) { lambda = Math.sqrt(hyperparameters[j]); penalty += (Math.log(2) - Math.log(lambda) + (lambda * Math.abs(betas[j]))); } penalty = 0 - penalty; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.2 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy