All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.estimate.BayesNetEstimator Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * BayesNetEstimator.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */

package weka.classifiers.bayes.net.estimate;

import weka.classifiers.bayes.BayesNet;
import weka.core.Instance;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * BayesNetEstimator is the base class for estimating the conditional probability tables of a Bayes network once the structure has been learned.
 * 

* * Valid options are:

* *

 -A <alpha>
 *  Initial count (alpha)
 * 
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.4 $ */ public class BayesNetEstimator implements OptionHandler, Serializable, RevisionHandler { /** for serialization */ static final long serialVersionUID = 2184330197666253884L; /** * Holds prior on count */ protected double m_fAlpha = 0.5; /** * estimateCPTs estimates the conditional probability tables for the Bayes * Net using the network structure. * * @param bayesNet the bayes net to use * @throws Exception always throws an exception, since subclass needs to be used */ public void estimateCPTs(BayesNet bayesNet) throws Exception { throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); } /** * Updates the classifier with the given instance. * * @param bayesNet the bayes net to use * @param instance the new training instance to include in the model * @throws Exception always throws an exception, since subclass needs to be used */ public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); } /** * Calculates the class membership probabilities for the given test * instance. * * @param bayesNet the bayes net to use * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception always throws an exception, since subclass needs to be used */ public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception { throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); } /** * initCPTs reserves space for CPTs and set all counts to zero * * @param bayesNet the bayes net to use * @throws Exception always throws an exception, since subclass needs to be used */ public void initCPTs(BayesNet bayesNet) throws Exception { throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); } // initCPTs /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option("\tInitial count (alpha)\n", "A", 1, "-A ")); return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -A <alpha>
     *  Initial count (alpha)
     * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sAlpha = Utils.getOption('A', options); if (sAlpha.length() != 0) { m_fAlpha = (new Float(sAlpha)).floatValue(); } else { m_fAlpha = 0.5f; } Utils.checkForRemainingOptions(options); } // setOptions /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[2]; int current = 0; options[current++] = "-A"; options[current++] = "" + m_fAlpha; return options; } // getOptions /** * Set prior used in probability table estimation * @param fAlpha representing prior */ public void setAlpha(double fAlpha) { m_fAlpha = fAlpha; } /** * Get prior used in probability table estimation * @return prior */ public double getAlpha() { return m_fAlpha; } /** * @return a string to describe the Alpha option. */ public String alphaTipText() { return "Alpha is used for estimating the probability tables and can be interpreted" + " as the initial count on each value."; } /** * This will return a string describing the class. * @return The string. */ public String globalInfo() { return "BayesNetEstimator is the base class for estimating the " + "conditional probability tables of a Bayes network once the " + "structure has been learned."; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } } // BayesNetEstimator




© 2015 - 2025 Weber Informatics LLC | Privacy Policy