weka.classifiers.bayes.net.estimate.BayesNetEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BayesNetEstimator.java
* Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.bayes.net.estimate;
import weka.classifiers.bayes.BayesNet;
import weka.core.Instance;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;
/**
* BayesNetEstimator is the base class for estimating the conditional probability tables of a Bayes network once the structure has been learned.
*
*
* Valid options are:
*
* -A <alpha>
* Initial count (alpha)
*
*
*
* @author Remco Bouckaert ([email protected])
* @version $Revision: 1.4 $
*/
public class BayesNetEstimator
implements OptionHandler, Serializable, RevisionHandler {
/** for serialization */
static final long serialVersionUID = 2184330197666253884L;
/**
* Holds prior on count
*/
protected double m_fAlpha = 0.5;
/**
* estimateCPTs estimates the conditional probability tables for the Bayes
* Net using the network structure.
*
* @param bayesNet the bayes net to use
* @throws Exception always throws an exception, since subclass needs to be used
*/
public void estimateCPTs(BayesNet bayesNet) throws Exception {
throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");
}
/**
* Updates the classifier with the given instance.
*
* @param bayesNet the bayes net to use
* @param instance the new training instance to include in the model
* @throws Exception always throws an exception, since subclass needs to be used
*/
public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception {
throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");
}
/**
* Calculates the class membership probabilities for the given test
* instance.
*
* @param bayesNet the bayes net to use
* @param instance the instance to be classified
* @return predicted class probability distribution
* @throws Exception always throws an exception, since subclass needs to be used
*/
public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception {
throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");
}
/**
* initCPTs reserves space for CPTs and set all counts to zero
*
* @param bayesNet the bayes net to use
* @throws Exception always throws an exception, since subclass needs to be used
*/
public void initCPTs(BayesNet bayesNet) throws Exception {
throw new Exception("Incorrect BayesNetEstimator: use subclass instead.");
} // initCPTs
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
public Enumeration listOptions() {
Vector newVector = new Vector(1);
newVector.addElement(new Option("\tInitial count (alpha)\n", "A", 1, "-A "));
return newVector.elements();
} // listOptions
/**
* Parses a given list of options.
*
* Valid options are:
*
* -A <alpha>
* Initial count (alpha)
*
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String sAlpha = Utils.getOption('A', options);
if (sAlpha.length() != 0) {
m_fAlpha = (new Float(sAlpha)).floatValue();
} else {
m_fAlpha = 0.5f;
}
Utils.checkForRemainingOptions(options);
} // setOptions
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String[] getOptions() {
String[] options = new String[2];
int current = 0;
options[current++] = "-A";
options[current++] = "" + m_fAlpha;
return options;
} // getOptions
/**
* Set prior used in probability table estimation
* @param fAlpha representing prior
*/
public void setAlpha(double fAlpha) {
m_fAlpha = fAlpha;
}
/**
* Get prior used in probability table estimation
* @return prior
*/
public double getAlpha() {
return m_fAlpha;
}
/**
* @return a string to describe the Alpha option.
*/
public String alphaTipText() {
return "Alpha is used for estimating the probability tables and can be interpreted"
+ " as the initial count on each value.";
}
/**
* This will return a string describing the class.
* @return The string.
*/
public String globalInfo() {
return
"BayesNetEstimator is the base class for estimating the "
+ "conditional probability tables of a Bayes network once the "
+ "structure has been learned.";
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.4 $");
}
} // BayesNetEstimator
© 2015 - 2025 Weber Informatics LLC | Privacy Policy