All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.global.TabuSearch Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * TabuSearch.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.search.global;

import weka.classifiers.bayes.BayesNet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm uses tabu search for finding a well scoring Bayes network structure. Tabu search is hill climbing till an optimum is reached. The following step is the least worst possible step. The last X steps are kept in a list and none of the steps in this so called tabu list is considered in taking the next step. The best network found in this traversal is returned.
*
* For more information see:
*
* R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. *

* * BibTeX: *

 * @phdthesis{Bouckaert1995,
 *    address = {Utrecht, Netherlands},
 *    author = {R.R. Bouckaert},
 *    institution = {University of Utrecht},
 *    title = {Bayesian Belief Networks: from Construction to Inference},
 *    year = {1995}
 * }
 * 
*

* * Valid options are:

* *

 -L <integer>
 *  Tabu list length
* *
 -U <integer>
 *  Number of runs
* *
 -P <nr of parents>
 *  Maximum number of parents
* *
 -R
 *  Use arc reversal operation.
 *  (default false)
* *
 -P <nr of parents>
 *  Maximum number of parents
* *
 -R
 *  Use arc reversal operation.
 *  (default false)
* *
 -N
 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [LOO-CV|k-Fold-CV|Cumulative-CV]
 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
* *
 -Q
 *  Use probabilistic or 0/1 scoring.
 *  (default probabilistic scoring)
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.5 $ */ public class TabuSearch extends HillClimber implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 1176705618756672292L; /** number of runs **/ int m_nRuns = 10; /** size of tabu list **/ int m_nTabuList = 5; /** the actual tabu list **/ Operation[] m_oTabuList = null; /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "R.R. Bouckaert"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.TITLE, "Bayesian Belief Networks: from Construction to Inference"); result.setValue(Field.INSTITUTION, "University of Utrecht"); result.setValue(Field.ADDRESS, "Utrecht, Netherlands"); return result; } /** * search determines the network structure/graph of the network * with the Tabu search algorithm. * * @param bayesNet the network to use * @param instances the instances to use * @throws Exception if something goes wrong */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { m_oTabuList = new Operation[m_nTabuList]; int iCurrentTabuList = 0; // keeps track of score pf best structure found so far double fBestScore; double fCurrentScore = calcScore(bayesNet); // keeps track of best structure found so far BayesNet bestBayesNet; // initialize bestBayesNet fBestScore = fCurrentScore; bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); // go do the search for (int iRun = 0; iRun < m_nRuns; iRun++) { Operation oOperation = getOptimalOperation(bayesNet, instances); performOperation(bayesNet, instances, oOperation); // sanity check if (oOperation == null) { throw new Exception("Panic: could not find any step to make. Tabu list too long?"); } // update tabu list m_oTabuList[iCurrentTabuList] = oOperation; iCurrentTabuList = (iCurrentTabuList + 1) % m_nTabuList; fCurrentScore += oOperation.m_fScore; // keep track of best network seen so far if (fCurrentScore > fBestScore) { fBestScore = fCurrentScore; copyParentSets(bestBayesNet, bayesNet); } if (bayesNet.getDebug()) { printTabuList(); } } // restore current network to best network copyParentSets(bayesNet, bestBayesNet); // free up memory bestBayesNet = null; } // search /** copyParentSets copies parent sets of source to dest BayesNet * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** check whether the operation is not in the tabu list * @param oOperation operation to be checked * @return true if operation is not in the tabu list */ boolean isNotTabu(Operation oOperation) { for (int iTabu = 0; iTabu < m_nTabuList; iTabu++) { if (oOperation.equals(m_oTabuList[iTabu])) { return false; } } return true; } // isNotTabu /** print tabu list for debugging purposes. */ void printTabuList() { for (int i = 0; i < m_nTabuList; i++) { Operation o = m_oTabuList[i]; if (o != null) { if (o.m_nOperation == 0) {System.out.print(" +(");} else {System.out.print(" -(");} System.out.print(o.m_nTail + "->" + o.m_nHead + ")"); } } System.out.println(); } // printTabuList /** * @return number of runs */ public int getRuns() { return m_nRuns; } // getRuns /** * Sets the number of runs * @param nRuns The number of runs to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } // setRuns /** * @return the Tabu List length */ public int getTabuList() { return m_nTabuList; } // getTabuList /** * Sets the Tabu List length. * @param nTabuList The nTabuList to set */ public void setTabuList(int nTabuList) { m_nTabuList = nTabuList; } // setTabuList /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option("\tTabu list length", "L", 1, "-L ")); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U ")); newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P ")); newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -L <integer>
	 *  Tabu list length
* *
 -U <integer>
	 *  Number of runs
* *
 -P <nr of parents>
	 *  Maximum number of parents
* *
 -R
	 *  Use arc reversal operation.
	 *  (default false)
* *
 -P <nr of parents>
	 *  Maximum number of parents
* *
 -R
	 *  Use arc reversal operation.
	 *  (default false)
* *
 -N
	 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [LOO-CV|k-Fold-CV|Cumulative-CV]
	 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
* *
 -Q
	 *  Use probabilistic or 0/1 scoring.
	 *  (default probabilistic scoring)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sTabuList = Utils.getOption('L', options); if (sTabuList.length() != 0) { setTabuList(Integer.parseInt(sTabuList)); } String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[7 + superOptions.length]; int current = 0; options[current++] = "-L"; options[current++] = "" + getTabuList(); options[current++] = "-U"; options[current++] = "" + getRuns(); // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses tabu search for finding a well scoring " + "Bayes network structure. Tabu search is hill climbing till an optimum is reached. The " + "following step is the least worst possible step. The last X steps are kept in a list and " + "none of the steps in this so called tabu list is considered in taking the next step. " + "The best network found in this traversal is returned.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } // globalInfo /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of steps to be performed."; } // runsTipText /** * @return a string to describe the TabuList option. */ public String tabuListTipText() { return "Sets the length of the tabu list."; } // tabuListTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.5 $"); } } // TabuSearch




© 2015 - 2025 Weber Informatics LLC | Privacy Policy