All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.LibSVM Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * LibSVM.java
 * Copyright (C) 2005 Yasser EL-Manzalawy (original code)
 * Copyright (C) 2005 University of Waikato, Hamilton, NZ (adapted code)
 * 
 */

package weka.classifiers.functions;

import java.lang.reflect.Array;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.util.Enumeration;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.Vector;

import weka.classifiers.RandomizableClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/*
 * Modifications by FracPete:
 * - complete overhaul to make it useable in Weka
 * - accesses libsvm classes only via Reflection to make Weka compile without
 *   the libsvm classes
 * - uses more efficient code to transfer the data into the libsvm sparse format
 */

/**
  
 * A wrapper class for the libsvm tools (the libsvm
 * classes, typically the jar file, need to be in the classpath to use this
 * classifier).
* LibSVM runs faster than SMO since it uses LibSVM to build the SVM classifier.
* LibSVM allows users to experiment with One-class SVM, Regressing SVM, and * nu-SVM supported by LibSVM tool. LibSVM reports many useful statistics about * LibSVM classifier (e.g., confusion matrix,precision, recall, ROC score, * etc.).
*
* Yasser EL-Manzalawy (2005). WLSVM. URL * http://www.cs.iastate.edu/~yasser/wlsvm/.
*
* Chih-Chung Chang, Chih-Jen Lin (2001). LIBSVM - A Library for Support Vector * Machines. URL http://www.csie.ntu.edu.tw/~cjlin/libsvm/. *

* * BibTeX: * *

 * @misc{EL-Manzalawy2005,
 *    author = {Yasser EL-Manzalawy},
 *    note = {You don't need to include the WLSVM package in the CLASSPATH},
 *    title = {WLSVM},
 *    year = {2005},
 *    URL = {http://www.cs.iastate.edu/\~yasser/wlsvm/}
 * }
 * 
 * @misc{Chang2001,
 *    author = {Chih-Chung Chang and Chih-Jen Lin},
 *    note = {The Weka classifier works with version 2.82 of LIBSVM},
 *    title = {LIBSVM - A Library for Support Vector Machines},
 *    year = {2001},
 *    URL = {http://www.csie.ntu.edu.tw/\~cjlin/libsvm/}
 * }
 * 
*

* * Valid options are: *

* *

 * -S <int>
 *  Set type of SVM (default: 0)
 *    0 = C-SVC
 *    1 = nu-SVC
 *    2 = one-class SVM
 *    3 = epsilon-SVR
 *    4 = nu-SVR
 * 
* *
 * -K <int>
 *  Set type of kernel function (default: 2)
 *    0 = linear: u'*v
 *    1 = polynomial: (gamma*u'*v + coef0)^degree
 *    2 = radial basis function: exp(-gamma*|u-v|^2)
 *    3 = sigmoid: tanh(gamma*u'*v + coef0)
 * 
* *
 * -D <int>
 *  Set degree in kernel function (default: 3)
 * 
* *
 * -G <double>
 *  Set gamma in kernel function (default: 1/k)
 * 
* *
 * -R <double>
 *  Set coef0 in kernel function (default: 0)
 * 
* *
 * -C <double>
 *  Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR
 *   (default: 1)
 * 
* *
 * -N <double>
 *  Set the parameter nu of nu-SVC, one-class SVM, and nu-SVR
 *   (default: 0.5)
 * 
* *
 * -Z
 *  Turns on normalization of input data (default: off)
 * 
* *
 * -J
 *  Turn off nominal to binary conversion.
 *  WARNING: use only if your data is all numeric!
 * 
* *
 * -V
 *  Turn off missing value replacement.
 *  WARNING: use only if your data has no missing values.
 * 
* *
 * -P <double>
 *  Set the epsilon in loss function of epsilon-SVR (default: 0.1)
 * 
* *
 * -M <double>
 *  Set cache memory size in MB (default: 40)
 * 
* *
 * -E <double>
 *  Set tolerance of termination criterion (default: 0.001)
 * 
* *
 * -H
 *  Turns the shrinking heuristics off (default: on)
 * 
* *
 * -W <double>
 *  Set the parameters C of class i to weight[i]*C, for C-SVC
 *  E.g., for a 3-class problem, you could use "1 1 1" for equally
 *  weighted classes.
 *  (default: 1 for all classes)
 * 
* *
 * -B
 *  Generate probability estimates for classification
 * 
* *
 * -seed <num>
 *  Random seed
 *  (default = 1)
 * 
* * * @author Yasser EL-Manzalawy * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 10660 $ * @see weka.core.converters.LibSVMLoader * @see weka.core.converters.LibSVMSaver */ public class LibSVM extends RandomizableClassifier implements TechnicalInformationHandler { /** the svm classname */ protected final static String CLASS_SVM = "libsvm.svm"; /** the svm_model classname */ protected final static String CLASS_SVMMODEL = "libsvm.svm_model"; /** the svm_problem classname */ protected final static String CLASS_SVMPROBLEM = "libsvm.svm_problem"; /** the svm_parameter classname */ protected final static String CLASS_SVMPARAMETER = "libsvm.svm_parameter"; /** the svm_node classname */ protected final static String CLASS_SVMNODE = "libsvm.svm_node"; /** serial UID */ protected static final long serialVersionUID = 14172; /** LibSVM Model */ protected Object m_Model; /** for normalizing the data */ protected Filter m_Filter = null; /** for converting mult-valued nominal attributes to binary */ protected Filter m_NominalToBinary; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_ReplaceMissingValues; /** normalize input data */ protected boolean m_Normalize = false; /** If true, the replace missing values filter is not applied */ private boolean m_noReplaceMissingValues; /** SVM type C-SVC (classification) */ public static final int SVMTYPE_C_SVC = 0; /** SVM type nu-SVC (classification) */ public static final int SVMTYPE_NU_SVC = 1; /** SVM type one-class SVM (classification) */ public static final int SVMTYPE_ONE_CLASS_SVM = 2; /** SVM type epsilon-SVR (regression) */ public static final int SVMTYPE_EPSILON_SVR = 3; /** SVM type nu-SVR (regression) */ public static final int SVMTYPE_NU_SVR = 4; /** SVM types */ public static final Tag[] TAGS_SVMTYPE = { new Tag(SVMTYPE_C_SVC, "C-SVC (classification)"), new Tag(SVMTYPE_NU_SVC, "nu-SVC (classification)"), new Tag(SVMTYPE_ONE_CLASS_SVM, "one-class SVM (classification)"), new Tag(SVMTYPE_EPSILON_SVR, "epsilon-SVR (regression)"), new Tag(SVMTYPE_NU_SVR, "nu-SVR (regression)") }; /** the SVM type */ protected int m_SVMType = SVMTYPE_C_SVC; /** kernel type linear: u'*v */ public static final int KERNELTYPE_LINEAR = 0; /** kernel type polynomial: (gamma*u'*v + coef0)^degree */ public static final int KERNELTYPE_POLYNOMIAL = 1; /** kernel type radial basis function: exp(-gamma*|u-v|^2) */ public static final int KERNELTYPE_RBF = 2; /** kernel type sigmoid: tanh(gamma*u'*v + coef0) */ public static final int KERNELTYPE_SIGMOID = 3; /** the different kernel types */ public static final Tag[] TAGS_KERNELTYPE = { new Tag(KERNELTYPE_LINEAR, "linear: u'*v"), new Tag(KERNELTYPE_POLYNOMIAL, "polynomial: (gamma*u'*v + coef0)^degree"), new Tag(KERNELTYPE_RBF, "radial basis function: exp(-gamma*|u-v|^2)"), new Tag(KERNELTYPE_SIGMOID, "sigmoid: tanh(gamma*u'*v + coef0)") }; /** the kernel type */ protected int m_KernelType = KERNELTYPE_RBF; /** * for poly - in older versions of libsvm declared as a double. At least since * 2.82 it is an int. */ protected int m_Degree = 3; /** for poly/rbf/sigmoid */ protected double m_Gamma = 0; /** for poly/rbf/sigmoid (the actual gamma) */ protected double m_GammaActual = 0; /** for poly/sigmoid */ protected double m_Coef0 = 0; /** in MB */ protected double m_CacheSize = 40; /** stopping criteria */ protected double m_eps = 1e-3; /** cost, for C_SVC, EPSILON_SVR and NU_SVR */ protected double m_Cost = 1; /** for C_SVC */ protected int[] m_WeightLabel = new int[0]; /** for C_SVC */ protected double[] m_Weight = new double[0]; /** for NU_SVC, ONE_CLASS, and NU_SVR */ protected double m_nu = 0.5; /** loss, for EPSILON_SVR */ protected double m_Loss = 0.1; /** use the shrinking heuristics */ protected boolean m_Shrinking = true; /** * whether to generate probability estimates instead of +1/-1 in case of * classification problems */ protected boolean m_ProbabilityEstimates = false; /** whether the libsvm classes are in the Classpath */ protected static boolean m_Present = false; static { try { Class.forName(CLASS_SVM); m_Present = true; } catch (Exception e) { m_Present = false; } } /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "A wrapper class for the libsvm tools (the libsvm classes, typically " + "the jar file, need to be in the classpath to use this classifier).\n" + "LibSVM runs faster than SMO since it uses LibSVM to build the SVM " + "classifier.\n" + "LibSVM allows users to experiment with One-class SVM, Regressing SVM, " + "and nu-SVM supported by LibSVM tool. LibSVM reports many useful " + "statistics about LibSVM classifier (e.g., confusion matrix," + "precision, recall, ROC score, etc.).\n" + "\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.MISC); result.setValue(TechnicalInformation.Field.AUTHOR, "Yasser EL-Manzalawy"); result.setValue(TechnicalInformation.Field.YEAR, "2005"); result.setValue(TechnicalInformation.Field.TITLE, "WLSVM"); result.setValue(TechnicalInformation.Field.NOTE, "LibSVM was originally developed as 'WLSVM'"); result.setValue(TechnicalInformation.Field.URL, "http://www.cs.iastate.edu/~yasser/wlsvm/"); result.setValue(TechnicalInformation.Field.NOTE, "You don't need to include the WLSVM package in the CLASSPATH"); additional = result.add(Type.MISC); additional.setValue(TechnicalInformation.Field.AUTHOR, "Chih-Chung Chang and Chih-Jen Lin"); additional.setValue(TechnicalInformation.Field.TITLE, "LIBSVM - A Library for Support Vector Machines"); additional.setValue(TechnicalInformation.Field.YEAR, "2001"); additional.setValue(TechnicalInformation.Field.URL, "http://www.csie.ntu.edu.tw/~cjlin/libsvm/"); additional.setValue(TechnicalInformation.Field.NOTE, "The Weka classifier works with version 2.82 of LIBSVM"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration listOptions() { Vector result; result = new Vector(); result.addElement(new Option("\tSet type of SVM (default: 0)\n" + "\t\t 0 = C-SVC\n" + "\t\t 1 = nu-SVC\n" + "\t\t 2 = one-class SVM\n" + "\t\t 3 = epsilon-SVR\n" + "\t\t 4 = nu-SVR", "S", 1, "-S ")); result.addElement(new Option("\tSet type of kernel function (default: 2)\n" + "\t\t 0 = linear: u'*v\n" + "\t\t 1 = polynomial: (gamma*u'*v + coef0)^degree\n" + "\t\t 2 = radial basis function: exp(-gamma*|u-v|^2)\n" + "\t\t 3 = sigmoid: tanh(gamma*u'*v + coef0)", "K", 1, "-K ")); result.addElement(new Option( "\tSet degree in kernel function (default: 3)", "D", 1, "-D ")); result.addElement(new Option( "\tSet gamma in kernel function (default: 1/k)", "G", 1, "-G ")); result.addElement(new Option("\tSet coef0 in kernel function (default: 0)", "R", 1, "-R ")); result.addElement(new Option( "\tSet the parameter C of C-SVC, epsilon-SVR, and nu-SVR\n" + "\t (default: 1)", "C", 1, "-C ")); result.addElement(new Option( "\tSet the parameter nu of nu-SVC, one-class SVM, and nu-SVR\n" + "\t (default: 0.5)", "N", 1, "-N ")); result.addElement(new Option( "\tTurns on normalization of input data (default: off)", "Z", 0, "-Z")); result.addElement(new Option("\tTurn off nominal to binary conversion." + "\n\tWARNING: use only if your data is all numeric!", "J", 0, "-J")); result.addElement(new Option("\tTurn off missing value replacement." + "\n\tWARNING: use only if your data has no missing " + "values.", "V", 0, "-V")); result.addElement(new Option( "\tSet the epsilon in loss function of epsilon-SVR (default: 0.1)", "P", 1, "-P ")); result.addElement(new Option("\tSet cache memory size in MB (default: 40)", "M", 1, "-M ")); result.addElement(new Option( "\tSet tolerance of termination criterion (default: 0.001)", "E", 1, "-E ")); result.addElement(new Option( "\tTurns the shrinking heuristics off (default: on)", "H", 0, "-H")); result .addElement(new Option( "\tSet the parameters C of class i to weight[i]*C, for C-SVC\n" + "\tE.g., for a 3-class problem, you could use \"1 1 1\" for equally\n" + "\tweighted classes.\n" + "\t(default: 1 for all classes)", "W", 1, "-W ")); result.addElement(new Option( "\tGenerate probability estimates for classification", "B", 0, "-B")); result.addElement(new Option("\tRandom seed\n\t(default = 1)", "seed", 1, "-seed ")); return result.elements(); } /** * Sets the classifier options *

* * Valid options are: *

* *

   * -S <int>
   *  Set type of SVM (default: 0)
   *    0 = C-SVC
   *    1 = nu-SVC
   *    2 = one-class SVM
   *    3 = epsilon-SVR
   *    4 = nu-SVR
   * 
* *
   * -K <int>
   *  Set type of kernel function (default: 2)
   *    0 = linear: u'*v
   *    1 = polynomial: (gamma*u'*v + coef0)^degree
   *    2 = radial basis function: exp(-gamma*|u-v|^2)
   *    3 = sigmoid: tanh(gamma*u'*v + coef0)
   * 
* *
   * -D <int>
   *  Set degree in kernel function (default: 3)
   * 
* *
   * -G <double>
   *  Set gamma in kernel function (default: 1/k)
   * 
* *
   * -R <double>
   *  Set coef0 in kernel function (default: 0)
   * 
* *
   * -C <double>
   *  Set the parameter C of C-SVC, epsilon-SVR, and nu-SVR
   *   (default: 1)
   * 
* *
   * -N <double>
   *  Set the parameter nu of nu-SVC, one-class SVM, and nu-SVR
   *   (default: 0.5)
   * 
* *
   * -Z
   *  Turns on normalization of input data (default: off)
   * 
* *
   * -J
   *  Turn off nominal to binary conversion.
   *  WARNING: use only if your data is all numeric!
   * 
* *
   * -V
   *  Turn off missing value replacement.
   *  WARNING: use only if your data has no missing values.
   * 
* *
   * -P <double>
   *  Set the epsilon in loss function of epsilon-SVR (default: 0.1)
   * 
* *
   * -M <double>
   *  Set cache memory size in MB (default: 40)
   * 
* *
   * -E <double>
   *  Set tolerance of termination criterion (default: 0.001)
   * 
* *
   * -H
   *  Turns the shrinking heuristics off (default: on)
   * 
* *
   * -W <double>
   *  Set the parameters C of class i to weight[i]*C, for C-SVC
   *  E.g., for a 3-class problem, you could use "1 1 1" for equally
   *  weighted classes.
   *  (default: 1 for all classes)
   * 
* *
   * -B
   *  Generate probability estimates for classification
   * 
* *
   * -seed <num>
   *  Random seed
   *  (default = 1)
   * 
* * * @param options the options to parse * @throws Exception if parsing fails */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSVMType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_SVMTYPE)); } else { setSVMType(new SelectedTag(SVMTYPE_C_SVC, TAGS_SVMTYPE)); } tmpStr = Utils.getOption('K', options); if (tmpStr.length() != 0) { setKernelType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_KERNELTYPE)); } else { setKernelType(new SelectedTag(KERNELTYPE_RBF, TAGS_KERNELTYPE)); } tmpStr = Utils.getOption('D', options); if (tmpStr.length() != 0) { setDegree(Integer.parseInt(tmpStr)); } else { setDegree(3); } tmpStr = Utils.getOption('G', options); if (tmpStr.length() != 0) { setGamma(Double.parseDouble(tmpStr)); } else { setGamma(0); } tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) { setCoef0(Double.parseDouble(tmpStr)); } else { setCoef0(0); } tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNu(Double.parseDouble(tmpStr)); } else { setNu(0.5); } tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) { setCacheSize(Double.parseDouble(tmpStr)); } else { setCacheSize(40); } tmpStr = Utils.getOption('C', options); if (tmpStr.length() != 0) { setCost(Double.parseDouble(tmpStr)); } else { setCost(1); } tmpStr = Utils.getOption('E', options); if (tmpStr.length() != 0) { setEps(Double.parseDouble(tmpStr)); } else { setEps(1e-3); } setNormalize(Utils.getFlag('Z', options)); setDoNotReplaceMissingValues(Utils.getFlag("V", options)); tmpStr = Utils.getOption('P', options); if (tmpStr.length() != 0) { setLoss(Double.parseDouble(tmpStr)); } else { setLoss(0.1); } setShrinking(!Utils.getFlag('H', options)); setWeights(Utils.getOption('W', options)); setProbabilityEstimates(Utils.getFlag('B', options)); String seedString = Utils.getOption("seed", options); if (seedString.length() > 0) { setSeed(Integer.parseInt(seedString.trim())); } } /** * Returns the current options * * @return the current setup */ @Override public String[] getOptions() { Vector result; result = new Vector(); result.add("-S"); result.add("" + m_SVMType); result.add("-K"); result.add("" + m_KernelType); result.add("-D"); result.add("" + getDegree()); result.add("-G"); result.add("" + getGamma()); result.add("-R"); result.add("" + getCoef0()); result.add("-N"); result.add("" + getNu()); result.add("-M"); result.add("" + getCacheSize()); result.add("-C"); result.add("" + getCost()); result.add("-E"); result.add("" + getEps()); result.add("-P"); result.add("" + getLoss()); if (!getShrinking()) { result.add("-H"); } if (getNormalize()) { result.add("-Z"); } if (getDoNotReplaceMissingValues()) { result.add("-V"); } if (getWeights().length() != 0) { result.add("-W"); result.add("" + getWeights()); } if (getProbabilityEstimates()) { result.add("-B"); } result.add("-seed"); result.add("" + getSeed()); return (String[]) result.toArray(new String[result.size()]); } /** * returns whether the libsvm classes are present or not, i.e. whether the * classes are in the classpath or not * * @return whether the libsvm classes are available */ public static boolean isPresent() { return m_Present; } /** * Sets type of SVM (default SVMTYPE_C_SVC) * * @param value the type of the SVM */ public void setSVMType(SelectedTag value) { if (value.getTags() == TAGS_SVMTYPE) { m_SVMType = value.getSelectedTag().getID(); } } /** * Gets type of SVM * * @return the type of the SVM */ public SelectedTag getSVMType() { return new SelectedTag(m_SVMType, TAGS_SVMTYPE); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String SVMTypeTipText() { return "The type of SVM to use."; } /** * Sets type of kernel function (default KERNELTYPE_RBF) * * @param value the kernel type */ public void setKernelType(SelectedTag value) { if (value.getTags() == TAGS_KERNELTYPE) { m_KernelType = value.getSelectedTag().getID(); } } /** * Gets type of kernel function * * @return the kernel type */ public SelectedTag getKernelType() { return new SelectedTag(m_KernelType, TAGS_KERNELTYPE); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String kernelTypeTipText() { return "The type of kernel to use"; } /** * Sets the degree of the kernel * * @param value the degree of the kernel */ public void setDegree(int value) { m_Degree = value; } /** * Gets the degree of the kernel * * @return the degree of the kernel */ public int getDegree() { return m_Degree; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String degreeTipText() { return "The degree of the kernel."; } /** * Sets gamma (default = 1/no of attributes) * * @param value the gamma value */ public void setGamma(double value) { m_Gamma = value; } /** * Gets gamma * * @return the current gamma */ public double getGamma() { return m_Gamma; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String gammaTipText() { return "The gamma to use, if 0 then 1/max_index is used."; } /** * Sets coef (default 0) * * @param value the coef */ public void setCoef0(double value) { m_Coef0 = value; } /** * Gets coef * * @return the coef */ public double getCoef0() { return m_Coef0; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String coef0TipText() { return "The coefficient to use."; } /** * Sets nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) * * @param value the new nu value */ public void setNu(double value) { m_nu = value; } /** * Gets nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) * * @return the current nu value */ public double getNu() { return m_nu; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String nuTipText() { return "The value of nu for nu-SVC, one-class SVM and nu-SVR."; } /** * Sets cache memory size in MB (default 40) * * @param value the memory size in MB */ public void setCacheSize(double value) { m_CacheSize = value; } /** * Gets cache memory size in MB * * @return the memory size in MB */ public double getCacheSize() { return m_CacheSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String cacheSizeTipText() { return "The cache size in MB."; } /** * Sets the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) * * @param value the cost value */ public void setCost(double value) { m_Cost = value; } /** * Sets the parameter C of C-SVC, epsilon-SVR, and nu-SVR * * @return the cost value */ public double getCost() { return m_Cost; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String costTipText() { return "The cost parameter C for C-SVC, epsilon-SVR and nu-SVR."; } /** * Sets tolerance of termination criterion (default 0.001) * * @param value the tolerance */ public void setEps(double value) { m_eps = value; } /** * Gets tolerance of termination criterion * * @return the current tolerance */ public double getEps() { return m_eps; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String epsTipText() { return "The tolerance of the termination criterion."; } /** * Sets the epsilon in loss function of epsilon-SVR (default 0.1) * * @param value the loss epsilon */ public void setLoss(double value) { m_Loss = value; } /** * Gets the epsilon in loss function of epsilon-SVR * * @return the loss epsilon */ public double getLoss() { return m_Loss; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String lossTipText() { return "The epsilon for the loss function in epsilon-SVR."; } /** * whether to use the shrinking heuristics * * @param value true uses shrinking */ public void setShrinking(boolean value) { m_Shrinking = value; } /** * whether to use the shrinking heuristics * * @return true, if shrinking is used */ public boolean getShrinking() { return m_Shrinking; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String shrinkingTipText() { return "Whether to use the shrinking heuristic."; } /** * whether to normalize input data * * @param value whether to normalize the data */ public void setNormalize(boolean value) { m_Normalize = value; } /** * whether to normalize input data * * @return true, if the data is normalized */ public boolean getNormalize() { return m_Normalize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String normalizeTipText() { return "Whether to normalize the data."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String doNotReplaceMissingValuesTipText() { return "Whether to turn off automatic replacement of missing " + "values. WARNING: set to true only if the data does not " + "contain missing values."; } /** * Whether to turn off automatic replacement of missing values. Set to true * only if the data does not contain missing values. * * @param b true if automatic missing values replacement is to be disabled. */ public void setDoNotReplaceMissingValues(boolean b) { m_noReplaceMissingValues = b; } /** * Gets whether automatic replacement of missing values is disabled. * * @return true if automatic replacement of missing values is disabled. */ public boolean getDoNotReplaceMissingValues() { return m_noReplaceMissingValues; } /** * Sets the parameters C of class i to weight[i]*C, for C-SVC (default 1). * Blank separated list of doubles. * * @param weightsStr the weights (doubles, separated by blanks) */ public void setWeights(String weightsStr) { StringTokenizer tok; int i; tok = new StringTokenizer(weightsStr, " "); m_Weight = new double[tok.countTokens()]; m_WeightLabel = new int[tok.countTokens()]; if (m_Weight.length == 0) { System.out .println("Zero Weights processed. Default weights will be used"); } for (i = 0; i < m_Weight.length; i++) { m_Weight[i] = Double.parseDouble(tok.nextToken()); m_WeightLabel[i] = i; } } /** * Gets the parameters C of class i to weight[i]*C, for C-SVC (default 1). * Blank separated doubles. * * @return the weights (doubles separated by blanks) */ public String getWeights() { String result; int i; result = ""; for (i = 0; i < m_Weight.length; i++) { if (i > 0) { result += " "; } result += Double.toString(m_Weight[i]); } return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String weightsTipText() { return "The weights to use for the classes (blank-separated list, eg, \"1 1 1\" for a 3-class problem), if empty 1 is used by default."; } /** * Returns whether probability estimates are generated instead of -1/+1 for * classification problems. * * @param value whether to predict probabilities */ public void setProbabilityEstimates(boolean value) { m_ProbabilityEstimates = value; } /** * Sets whether to generate probability estimates instead of -1/+1 for * classification problems. * * @return true, if probability estimates should be returned */ public boolean getProbabilityEstimates() { return m_ProbabilityEstimates; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String probabilityEstimatesTipText() { return "Whether to generate probability estimates instead of -1/+1 for classification problems."; } /** * sets the specified field * * @param o the object to set the field for * @param name the name of the field * @param value the new value of the field */ protected void setField(Object o, String name, Object value) { Field f; try { f = o.getClass().getField(name); f.set(o, value); } catch (Exception e) { e.printStackTrace(); } } /** * sets the specified field in an array * * @param o the object to set the field for * @param name the name of the field * @param index the index in the array * @param value the new value of the field */ protected void setField(Object o, String name, int index, Object value) { Field f; try { f = o.getClass().getField(name); Array.set(f.get(o), index, value); } catch (Exception e) { e.printStackTrace(); } } /** * returns the current value of the specified field * * @param o the object the field is member of * @param name the name of the field * @return the value */ protected Object getField(Object o, String name) { Field f; Object result; try { f = o.getClass().getField(name); result = f.get(o); } catch (Exception e) { e.printStackTrace(); result = null; } return result; } /** * sets a new array for the field * * @param o the object to set the array for * @param name the name of the field * @param type the type of the array * @param length the length of the one-dimensional array */ protected void newArray(Object o, String name, Class type, int length) { newArray(o, name, type, new int[] { length }); } /** * sets a new array for the field * * @param o the object to set the array for * @param name the name of the field * @param type the type of the array * @param dimensions the dimensions of the array */ protected void newArray(Object o, String name, Class type, int[] dimensions) { Field f; try { f = o.getClass().getField(name); f.set(o, Array.newInstance(type, dimensions)); } catch (Exception e) { e.printStackTrace(); } } /** * executes the specified method and returns the result, if any * * @param o the object the method should be called from * @param name the name of the method * @param paramClasses the classes of the parameters * @param paramValues the values of the parameters * @return the return value of the method, if any (in that case null) */ protected Object invokeMethod(Object o, String name, Class[] paramClasses, Object[] paramValues) { Method m; Object result; result = null; try { m = o.getClass().getMethod(name, paramClasses); result = m.invoke(o, paramValues); } catch (Exception e) { e.printStackTrace(); result = null; } return result; } /** * transfers the local variables into a svm_parameter object * * @return the configured svm_parameter object */ protected Object getParameters() { Object result; int i; try { result = Class.forName(CLASS_SVMPARAMETER).newInstance(); setField(result, "svm_type", new Integer(m_SVMType)); setField(result, "kernel_type", new Integer(m_KernelType)); setField(result, "degree", new Integer(m_Degree)); setField(result, "gamma", new Double(m_GammaActual)); setField(result, "coef0", new Double(m_Coef0)); setField(result, "nu", new Double(m_nu)); setField(result, "cache_size", new Double(m_CacheSize)); setField(result, "C", new Double(m_Cost)); setField(result, "eps", new Double(m_eps)); setField(result, "p", new Double(m_Loss)); setField(result, "shrinking", new Integer(m_Shrinking ? 1 : 0)); setField(result, "nr_weight", new Integer(m_Weight.length)); setField(result, "probability", new Integer(m_ProbabilityEstimates ? 1 : 0)); newArray(result, "weight", Double.TYPE, m_Weight.length); newArray(result, "weight_label", Integer.TYPE, m_Weight.length); for (i = 0; i < m_Weight.length; i++) { setField(result, "weight", i, new Double(m_Weight[i])); setField(result, "weight_label", i, new Integer(m_WeightLabel[i])); } } catch (Exception e) { e.printStackTrace(); result = null; } return result; } /** * returns the svm_problem * * @param vx the x values * @param vy the y values * @return the svm_problem object */ protected Object getProblem(Vector vx, Vector vy) { Object result; try { result = Class.forName(CLASS_SVMPROBLEM).newInstance(); setField(result, "l", new Integer(vy.size())); newArray(result, "x", Class.forName(CLASS_SVMNODE), new int[] { vy.size(), 0 }); for (int i = 0; i < vy.size(); i++) { setField(result, "x", i, vx.elementAt(i)); } newArray(result, "y", Double.TYPE, vy.size()); for (int i = 0; i < vy.size(); i++) { setField(result, "y", i, vy.elementAt(i)); } } catch (Exception e) { e.printStackTrace(); result = null; } return result; } /** * returns an instance into a sparse libsvm array * * @param instance the instance to work on * @return the libsvm array * @throws Exception if setup of array fails */ protected Object instanceToArray(Instance instance) throws Exception { int index; int count; int i; Object result; // determine number of non-zero attributes /* * for (i = 0; i < instance.numAttributes(); i++) { if (i == * instance.classIndex()) continue; if (instance.value(i) != 0) count++; } */ count = 0; for (i = 0; i < instance.numValues(); i++) { if (instance.index(i) == instance.classIndex()) { continue; } if (instance.valueSparse(i) != 0) { count++; } } // fill array /* * result = Array.newInstance(Class.forName(CLASS_SVMNODE), count); index = * 0; for (i = 0; i < instance.numAttributes(); i++) { if (i == * instance.classIndex()) continue; if (instance.value(i) == 0) continue; * * Array.set(result, index, Class.forName(CLASS_SVMNODE).newInstance()); * setField(Array.get(result, index), "index", new Integer(i + 1)); * setField(Array.get(result, index), "value", new * Double(instance.value(i))); index++; } */ result = Array.newInstance(Class.forName(CLASS_SVMNODE), count); index = 0; for (i = 0; i < instance.numValues(); i++) { int idx = instance.index(i); if (idx == instance.classIndex()) { continue; } if (instance.valueSparse(i) == 0) { continue; } Array.set(result, index, Class.forName(CLASS_SVMNODE).newInstance()); setField(Array.get(result, index), "index", new Integer(idx + 1)); setField(Array.get(result, index), "value", new Double(instance.valueSparse(i))); index++; } return result; } /** * Computes the distribution for a given instance. In case of 1-class * classification, 1 is returned at index 0 if libsvm returns 1 and NaN (= * missing) if libsvm returns -1. * * @param instance the instance for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ @Override public double[] distributionForInstance(Instance instance) throws Exception { int[] labels = new int[instance.numClasses()]; double[] prob_estimates = null; if (m_ProbabilityEstimates) { invokeMethod( Class.forName(CLASS_SVM).newInstance(), "svm_get_labels", new Class[] { Class.forName(CLASS_SVMMODEL), Array.newInstance(Integer.TYPE, instance.numClasses()).getClass() }, new Object[] { m_Model, labels }); prob_estimates = new double[instance.numClasses()]; } if (!getDoNotReplaceMissingValues()) { m_ReplaceMissingValues.input(instance); m_ReplaceMissingValues.batchFinished(); instance = m_ReplaceMissingValues.output(); } if (m_Filter != null) { m_Filter.input(instance); m_Filter.batchFinished(); instance = m_Filter.output(); } m_NominalToBinary.input(instance); m_NominalToBinary.batchFinished(); instance = m_NominalToBinary.output(); Object x = instanceToArray(instance); double v; double[] result = new double[instance.numClasses()]; if (m_ProbabilityEstimates && ((m_SVMType == SVMTYPE_C_SVC) || (m_SVMType == SVMTYPE_NU_SVC))) { v = ((Double) invokeMethod( Class.forName(CLASS_SVM).newInstance(), "svm_predict_probability", new Class[] { Class.forName(CLASS_SVMMODEL), Array.newInstance(Class.forName(CLASS_SVMNODE), Array.getLength(x)) .getClass(), Array.newInstance(Double.TYPE, prob_estimates.length).getClass() }, new Object[] { m_Model, x, prob_estimates })).doubleValue(); // Return order of probabilities to canonical weka attribute order for (int k = 0; k < prob_estimates.length; k++) { result[labels[k]] = prob_estimates[k]; } } else { v = ((Double) invokeMethod(Class.forName(CLASS_SVM).newInstance(), "svm_predict", new Class[] { Class.forName(CLASS_SVMMODEL), Array.newInstance(Class.forName(CLASS_SVMNODE), Array.getLength(x)) .getClass() }, new Object[] { m_Model, x })).doubleValue(); if (instance.classAttribute().isNominal()) { if (m_SVMType == SVMTYPE_ONE_CLASS_SVM) { if (v > 0) { result[0] = 1; } else { // outlier (interface for Classifier specifies that unclassified // instances // should return a distribution of all zeros) result[0] = 0; } } else { result[(int) v] = 1; } } else { result[0] = v; } } return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enableDependency(Capability.UNARY_CLASS); result.enableDependency(Capability.NOMINAL_CLASS); result.enableDependency(Capability.NUMERIC_CLASS); result.enableDependency(Capability.DATE_CLASS); switch (m_SVMType) { case SVMTYPE_C_SVC: case SVMTYPE_NU_SVC: result.enable(Capability.NOMINAL_CLASS); break; case SVMTYPE_ONE_CLASS_SVM: result.enable(Capability.UNARY_CLASS); break; case SVMTYPE_EPSILON_SVR: case SVMTYPE_NU_SVR: result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); break; default: throw new IllegalArgumentException("SVMType " + m_SVMType + " is not supported!"); } result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * builds the classifier * * @param insts the training instances * @throws Exception if libsvm classes not in classpath or libsvm encountered * a problem */ @Override public void buildClassifier(Instances insts) throws Exception { m_Filter = null; if (!isPresent()) { throw new Exception("libsvm classes not in CLASSPATH!"); } // remove instances with missing class insts = new Instances(insts); insts.deleteWithMissingClass(); if (!getDoNotReplaceMissingValues()) { m_ReplaceMissingValues = new ReplaceMissingValues(); m_ReplaceMissingValues.setInputFormat(insts); insts = Filter.useFilter(insts, m_ReplaceMissingValues); } // can classifier handle the data? // we check this here so that if the user turns off // replace missing values filtering, it will fail // if the data actually does have missing values getCapabilities().testWithFail(insts); if (getNormalize()) { m_Filter = new Normalize(); m_Filter.setInputFormat(insts); insts = Filter.useFilter(insts, m_Filter); } // nominal to binary m_NominalToBinary = new NominalToBinary(); m_NominalToBinary.setInputFormat(insts); insts = Filter.useFilter(insts, m_NominalToBinary); Vector vy = new Vector(); Vector vx = new Vector(); int max_index = 0; for (int d = 0; d < insts.numInstances(); d++) { Instance inst = insts.instance(d); Object x = instanceToArray(inst); int m = Array.getLength(x); if (m > 0) { max_index = Math.max(max_index, ((Integer) getField(Array.get(x, m - 1), "index")).intValue()); } vx.addElement(x); vy.addElement(new Double(inst.classValue())); } // calculate actual gamma if (getGamma() == 0) { m_GammaActual = 1.0 / max_index; } else { m_GammaActual = m_Gamma; } // check parameter String error_msg = (String) invokeMethod(Class.forName(CLASS_SVM).newInstance(), "svm_check_parameter", new Class[] { Class.forName(CLASS_SVMPROBLEM), Class.forName(CLASS_SVMPARAMETER) }, new Object[] { getProblem(vx, vy), getParameters() }); if (error_msg != null) { throw new Exception("Error: " + error_msg); } // make probability estimates deterministic from run to run Class svmClass = Class.forName(CLASS_SVM); Field randF = svmClass.getField("rand"); Random rand = (Random) randF.get(null); // static field rand.setSeed(m_Seed); // train model m_Model = invokeMethod( Class.forName(CLASS_SVM).newInstance(), "svm_train", new Class[] { Class.forName(CLASS_SVMPROBLEM), Class.forName(CLASS_SVMPARAMETER) }, new Object[] { getProblem(vx, vy), getParameters() }); } /** * returns a string representation * * @return a string representation */ @Override public String toString() { return "LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10660 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main(String[] args) { runClassifier(new LibSVM(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy