All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.Logistic Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Logistic.java
 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.RemoveUseless;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Class for building and using a multinomial logistic regression model with a ridge estimator.
*
* There are some modifications, however, compared to the paper of leCessie and van Houwelingen(1992):
*
* If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will be an m*(k-1) matrix.
*
* The probability for class j with the exception of the last class is
*
* Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
*
* The last class has probability
*
* 1-(sum[j=1..(k-1)]Pj(Xi))
* = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
*
* The (negative) multinomial log-likelihood is thus:
*
* L = -sum[i=1..n]{
* sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
* +(1 - (sum[j=1..(k-1)]Yij))
* * ln(1 - sum[j=1..(k-1)]Pj(Xi))
* } + ridge * (B^2)
*
* In order to find the matrix B for which L is minimised, a Quasi-Newton Method is used to search for the optimized values of the m*(k-1) variables. Note that before we use the optimization procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For details of the optimization procedure, please check weka.core.Optimization class.
*
* Although original Logistic Regression does not deal with instance weights, we modify the algorithm a little bit to handle the instance weights.
*
* For more information see:
*
* le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic Regression. Applied Statistics. 41(1):191-201.
*
* Note: Missing values are replaced using a ReplaceMissingValuesFilter, and nominal attributes are transformed into numeric attributes using a NominalToBinaryFilter. *

* * BibTeX: *

 * @article{leCessie1992,
 *    author = {le Cessie, S. and van Houwelingen, J.C.},
 *    journal = {Applied Statistics},
 *    number = {1},
 *    pages = {191-201},
 *    title = {Ridge Estimators in Logistic Regression},
 *    volume = {41},
 *    year = {1992}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  Turn on debugging output.
* *
 -R <ridge>
 *  Set the ridge in the log-likelihood.
* *
 -M <number>
 *  Set the maximum number of iterations (default -1, until convergence).
* * * @author Xin Xu ([email protected]) * @version $Revision: 5523 $ */ public class Logistic extends Classifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3932117032546553727L; /** The coefficients (optimized parameters) of the model */ protected double [][] m_Par; /** The data saved as a matrix */ protected double [][] m_Data; /** The number of attributes in the model */ protected int m_NumPredictors; /** The index of the class attribute */ protected int m_ClassIndex; /** The number of the class labels */ protected int m_NumClasses; /** The ridge parameter. */ protected double m_Ridge = 1e-8; /** An attribute filter */ private RemoveUseless m_AttFilter; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** Debugging output */ protected boolean m_Debug; /** Log-likelihood of the searched model */ protected double m_LL; /** The maximum number of iterations. */ private int m_MaxIts = -1; private Instances m_structure; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a multinomial logistic " +"regression model with a ridge estimator.\n\n" +"There are some modifications, however, compared to the paper of " +"leCessie and van Houwelingen(1992): \n\n" +"If there are k classes for n instances with m attributes, the " +"parameter matrix B to be calculated will be an m*(k-1) matrix.\n\n" +"The probability for class j with the exception of the last class is\n\n" +"Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1) \n\n" +"The last class has probability\n\n" +"1-(sum[j=1..(k-1)]Pj(Xi)) \n\t= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)\n\n" +"The (negative) multinomial log-likelihood is thus: \n\n" +"L = -sum[i=1..n]{\n\tsum[j=1..(k-1)](Yij * ln(Pj(Xi)))" +"\n\t+(1 - (sum[j=1..(k-1)]Yij)) \n\t* ln(1 - sum[j=1..(k-1)]Pj(Xi))" +"\n\t} + ridge * (B^2)\n\n" +"In order to find the matrix B for which L is minimised, a " +"Quasi-Newton Method is used to search for the optimized values of " +"the m*(k-1) variables. Note that before we use the optimization " +"procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For " +"details of the optimization procedure, please check " +"weka.core.Optimization class.\n\n" +"Although original Logistic Regression does not deal with instance " +"weights, we modify the algorithm a little bit to handle the " +"instance weights.\n\n" +"For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" +"Note: Missing values are replaced using a ReplaceMissingValuesFilter, and " +"nominal attributes are transformed into numeric attributes using a " +"NominalToBinaryFilter."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "le Cessie, S. and van Houwelingen, J.C."); result.setValue(Field.YEAR, "1992"); result.setValue(Field.TITLE, "Ridge Estimators in Logistic Regression"); result.setValue(Field.JOURNAL, "Applied Statistics"); result.setValue(Field.VOLUME, "41"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "191-201"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option("\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option("\tSet the ridge in the log-likelihood.", "R", 1, "-R ")); newVector.addElement(new Option("\tSet the maximum number of iterations"+ " (default -1, until convergence).", "M", 1, "-M ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Turn on debugging output.
* *
 -R <ridge>
   *  Set the ridge in the log-likelihood.
* *
 -M <number>
   *  Set the maximum number of iterations (default -1, until convergence).
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String ridgeString = Utils.getOption('R', options); if (ridgeString.length() != 0) m_Ridge = Double.parseDouble(ridgeString); else m_Ridge = 1.0e-8; String maxItsString = Utils.getOption('M', options); if (maxItsString.length() != 0) m_MaxIts = Integer.parseInt(maxItsString); else m_MaxIts = -1; } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [5]; int current = 0; if (getDebug()) options[current++] = "-D"; options[current++] = "-R"; options[current++] = ""+m_Ridge; options[current++] = "-M"; options[current++] = ""+m_MaxIts; while (current < options.length) options[current++] = ""; return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "Output debug information to the console."; } /** * Sets whether debugging output will be printed. * * @param debug true if debugging output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Gets whether debugging output will be printed. * * @return true if debugging output will be printed */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ridgeTipText() { return "Set the Ridge value in the log-likelihood."; } /** * Sets the ridge in the log-likelihood. * * @param ridge the ridge */ public void setRidge(double ridge) { m_Ridge = ridge; } /** * Gets the ridge in the log-likelihood. * * @return the ridge */ public double getRidge() { return m_Ridge; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxItsTipText() { return "Maximum number of iterations to perform."; } /** * Get the value of MaxIts. * * @return Value of MaxIts. */ public int getMaxIts() { return m_MaxIts; } /** * Set the value of MaxIts. * * @param newMaxIts Value to assign to MaxIts. */ public void setMaxIts(int newMaxIts) { m_MaxIts = newMaxIts; } private class OptEng extends Optimization{ /** Weights of instances in the data */ private double[] weights; /** Class labels of instances */ private int[] cls; /** * Set the weights of instances * @param w the weights to be set */ public void setWeights(double[] w) { weights = w; } /** * Set the class labels of instances * @param c the class labels to be set */ public void setClassLabels(int[] c) { cls = c; } /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood int dim = m_NumPredictors+1; // Number of variables per class for(int i=0; i 1)) throw new Exception("Sum of weights of instances less than 1, please reweight!"); xMean[0] = 0; xSD[0] = 1; for (int j = 1; j <= nR; j++) { xMean[j] = xMean[j] / totWeights; if(totWeights > 1) xSD[j] = Math.sqrt(Math.abs(xSD[j] - totWeights*xMean[j]*xMean[j])/(totWeights-1)); else xSD[j] = 0; } if (m_Debug) { // Output stats about input data System.out.println("Descriptives..."); for (int m = 0; m <= nK; m++) System.out.println(sY[m] + " cases have class " + m); System.out.println("\n Variable Avg SD "); for (int j = 1; j <= nR; j++) System.out.println(Utils.doubleToString(j,8,4) + Utils.doubleToString(xMean[j], 10, 4) + Utils.doubleToString(xSD[j], 10, 4) ); } // Normalise input data for (int i = 0; i < nC; i++) { for (int j = 0; j <= nR; j++) { if (xSD[j] != 0) { m_Data[i][j] = (m_Data[i][j] - xMean[j]) / xSD[j]; } } } if (m_Debug) { System.out.println("\nIteration History..." ); } double x[] = new double[(nR+1)*nK]; double[][] b = new double[2][x.length]; // Boundary constraints, N/A here // Initialize for(int p=0; p--------------"); } else{ opt.setMaxIteration(m_MaxIts); x = opt.findArgmin(x, b); if(x==null) // Not enough, but use the current value x = opt.getVarbValues(); } m_LL = -opt.getMinFunction(); // Log-likelihood // Don't need data matrix anymore m_Data = null; // Convert coefficients back to non-normalized attribute units for(int i=0; i < nK; i++){ m_Par[0][i] = x[i*(nR+1)]; for(int j = 1; j <= nR; j++) { m_Par[j][i] = x[i*(nR+1)+j]; if (xSD[j] != 0) { m_Par[j][i] /= xSD[j]; m_Par[0][i] -= m_Par[j][i] * xMean[j]; } } } } /** * Computes the distribution for a given instance * * @param instance the instance for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double [] distributionForInstance(Instance instance) throws Exception { m_ReplaceMissingValues.input(instance); instance = m_ReplaceMissingValues.output(); m_AttFilter.input(instance); instance = m_AttFilter.output(); m_NominalToBinary.input(instance); instance = m_NominalToBinary.output(); // Extract the predictor columns into an array double [] instDat = new double [m_NumPredictors + 1]; int j = 1; instDat[0] = 1; for (int k = 0; k <= m_NumPredictors; k++) { if (k != m_ClassIndex) { instDat[j++] = instance.value(k); } } double [] distribution = evaluateProbability(instDat); return distribution; } /** * Compute the posterior distribution using optimized parameter values * and the testing instance. * @param data the testing instance * @return the posterior probability distribution */ private double[] evaluateProbability(double[] data){ double[] prob = new double[m_NumClasses], v = new double[m_NumClasses]; // Log-posterior before normalizing for(int j = 0; j < m_NumClasses-1; j++){ for(int k = 0; k <= m_NumPredictors; k++){ v[j] += m_Par[k][j] * data[k]; } } v[m_NumClasses-1] = 0; // Do so to avoid scaling problems for(int m=0; m < m_NumClasses; m++){ double sum = 0; for(int n=0; n < m_NumClasses-1; n++) sum += Math.exp(v[n] - v[m]); prob[m] = 1 / (sum + Math.exp(-v[m])); } return prob; } /** * Returns the coefficients for this logistic model. * The first dimension indexes the attributes, and * the second the classes. * * @return the coefficients for this logistic model */ public double [][] coefficients() { return m_Par; } /** * Gets a string describing the classifier. * * @return a string describing the classifer built. */ public String toString() { StringBuffer temp = new StringBuffer(); String result = ""; temp.append("Logistic Regression with ridge parameter of " + m_Ridge); if (m_Par == null) { return result + ": No model built yet."; } // find longest attribute name int attLength = 0; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex() && m_structure.attribute(i).name().length() > attLength) { attLength = m_structure.attribute(i).name().length(); } } if ("Intercept".length() > attLength) { attLength = "Intercept".length(); } if ("Variable".length() > attLength) { attLength = "Variable".length(); } attLength += 2; int colWidth = 0; // check length of class names for (int i = 0; i < m_structure.classAttribute().numValues() - 1; i++) { if (m_structure.classAttribute().value(i).length() > colWidth) { colWidth = m_structure.classAttribute().value(i).length(); } } // check against coefficients and odds ratios for (int j = 1; j <= m_NumPredictors; j++) { for (int k = 0; k < m_NumClasses - 1; k++) { if (Utils.doubleToString(m_Par[j][k], 12, 4).trim().length() > colWidth) { colWidth = Utils.doubleToString(m_Par[j][k], 12, 4).trim().length(); } double ORc = Math.exp(m_Par[j][k]); String t = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); if (t.trim().length() > colWidth) { colWidth = t.trim().length(); } } } if ("Class".length() > colWidth) { colWidth = "Class".length(); } colWidth += 2; temp.append("\nCoefficients...\n"); temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n"); temp.append(Utils.padRight("Variable", attLength)); for (int i = 0; i < m_NumClasses - 1; i++) { String className = m_structure.classAttribute().value(i); temp.append(Utils.padLeft(className, colWidth)); } temp.append("\n"); int separatorL = attLength + ((m_NumClasses - 1) * colWidth); for (int i = 0; i < separatorL; i++) { temp.append("="); } temp.append("\n"); int j = 1; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex()) { temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength)); for (int k = 0; k < m_NumClasses-1; k++) { temp.append(Utils.padLeft(Utils.doubleToString(m_Par[j][k], 12, 4).trim(), colWidth)); } temp.append("\n"); j++; } } temp.append(Utils.padRight("Intercept", attLength)); for (int k = 0; k < m_NumClasses-1; k++) { temp.append(Utils.padLeft(Utils.doubleToString(m_Par[0][k], 10, 4).trim(), colWidth)); } temp.append("\n"); temp.append("\n\nOdds Ratios...\n"); temp.append(Utils.padLeft(" ", attLength) + Utils.padLeft("Class", colWidth) + "\n"); temp.append(Utils.padRight("Variable", attLength)); for (int i = 0; i < m_NumClasses - 1; i++) { String className = m_structure.classAttribute().value(i); temp.append(Utils.padLeft(className, colWidth)); } temp.append("\n"); for (int i = 0; i < separatorL; i++) { temp.append("="); } temp.append("\n"); j = 1; for (int i = 0; i < m_structure.numAttributes(); i++) { if (i != m_structure.classIndex()) { temp.append(Utils.padRight(m_structure.attribute(i).name(), attLength)); for (int k = 0; k < m_NumClasses-1; k++) { double ORc = Math.exp(m_Par[j][k]); String ORs = " " + ((ORc > 1e10) ? "" + ORc : Utils.doubleToString(ORc, 12, 4)); temp.append(Utils.padLeft(ORs.trim(), colWidth)); } temp.append("\n"); j++; } } return temp.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5523 $"); } /** * Main method for testing this class. * * @param argv should contain the command line arguments to the * scheme (see Evaluation) */ public static void main(String [] argv) { runClassifier(new Logistic(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy