All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.PrecomputedKernelMatrixKernel Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    PrecomputedKernelMatrixKernel.java
 *    Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
 *
 */
package weka.classifiers.functions.supportVector;

import weka.core.Option;
import weka.core.matrix.Matrix;
import weka.core.Copyable;
import weka.core.Instances;
import weka.core.Utils;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;

import java.util.Enumeration;
import java.util.Vector;

import java.io.FileReader;
import java.io.File;

/**
 *
 
 * This kernel is based on a static kernel matrix that is read from a file. Instances must have a single nominal attribute (excluding the class). This attribute must be the first attribute in the file and its values are used to reference rows/columns in the kernel matrix. The second attribute must be the class attribute.
 * 

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -M <file name>
 *  The file name of the file that holds the kernel matrix.
 *  (default: kernelMatrix.matrix)
* * * @author Eibe Frank ([email protected]) * @version $Revision: 9897 $ */ public class PrecomputedKernelMatrixKernel extends Kernel implements Copyable { /** for serialization */ static final long serialVersionUID = -321831645846363333L; /** The file holding the kernel matrix. */ protected File m_KernelMatrixFile = new File("kernelMatrix.matrix"); /** The kernel matrix. */ protected Matrix m_KernelMatrix; /** A classifier counter. */ protected int m_Counter; /** * Return a shallow copy of this kernel * * @return a shallow copy of this kernel */ public Object copy() { PrecomputedKernelMatrixKernel newK = new PrecomputedKernelMatrixKernel(); newK.setKernelMatrix(m_KernelMatrix); newK.setKernelMatrixFile(m_KernelMatrixFile); newK.m_Counter = m_Counter; return newK; } /** * Returns a string describing the kernel * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "This kernel is based on a static kernel matrix that is read from a file. " + "Instances must have a single nominal attribute (excluding the class). " + "This attribute must be the first attribute in the file and its values are " + "used to reference rows/columns in the kernel matrix. The second attribute " + "must be the class attribute."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result; result = new Vector(); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); result.addElement(new Option( "\tThe file name of the file that holds the kernel matrix.\n" + "\t(default: kernelMatrix.matrix)", "M", 1, "-M ")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Enables debugging output (if available) to be printed.
   *  (default: off)
* *
 -no-checks
   *  Turns off all checks - use with caution!
   *  (default: checks on)
* *
 -M <file name>
   *  The file name of the file that holds the kernel matrix.
   *  (default: kernelMatrix.matrix)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('M', options); if (tmpStr.length() != 0) setKernelMatrixFile(new File(tmpStr)); else setKernelMatrixFile(new File("kernelMatrix.matrix")); super.setOptions(options); } /** * Gets the current settings of the Kernel. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { int i; Vector result; String[] options; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-M"); result.add("" + getKernelMatrixFile()); return (String[]) result.toArray(new String[result.size()]); } /** * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ public double eval(int id1, int id2, Instance inst1) throws Exception { if (m_KernelMatrix == null) { throw new IllegalArgumentException("Kernel matrix has not been loaded successfully."); } int index1 = -1; if (id1 > -1) { index1 = (int)m_data.instance(id1).value(0); } else { index1 = (int)inst1.value(0); } int index2 = (int)m_data.instance(id2).value(0); return m_KernelMatrix.get(index1, index2); } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { super.initVars(data); try { if (m_KernelMatrix == null) { m_KernelMatrix = new Matrix(new FileReader(m_KernelMatrixFile)); // System.err.println("Read kernel matrix."); } } catch (Exception e) { System.err.println("Problem reading matrix from " + m_KernelMatrixFile); } m_Counter++; // System.err.print("Building classifier: " + m_Counter + "\r"); } /** * Returns the Capabilities of this kernel. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); result.enable(Capability.NOMINAL_ATTRIBUTES); result.enableAllClasses(); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Sets the file holding the kernel matrix * * @param value the exponent value */ public void setKernelMatrixFile(File f) { m_KernelMatrixFile = f; } /** * Gets the file containing the kernel matrix. * * @return the exponent value */ public File getKernelMatrixFile() { return m_KernelMatrixFile; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String kernelMatrixFileTipText() { return "The file holding the kernel matrix."; } /** * Set the kernel matrix. This method is used by the * unit test for this class, as it loads at test matrix * as a system resource. * * @param km the kernel matrix to use */ protected void setKernelMatrix(Matrix km) { m_KernelMatrix = km; } /** * returns a string representation for the Kernel * * @return a string representaiton of the kernel */ public String toString() { return "Using kernel matrix from file with name: " + getKernelMatrixFile(); } /** * Frees the memory used by the kernel. * (Useful with kernels which use cache.) * This function is called when the training is done. * i.e. after that, eval will be called with id1 == -1. */ public void clean() { // do nothing } /** * Returns the number of kernel evaluation performed. * * @return the number of kernel evaluation performed. */ public int numEvals() { return 0; } /** * Returns the number of dot product cache hits. * * @return the number of dot product cache hits, or -1 if not supported by this kernel. */ public int numCacheHits() { return 0; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9897 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy