All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.lazy.KStar Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    KStar.java
 *    Copyright (C) 1995-97 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.lazy;

import weka.classifiers.Classifier;
import weka.classifiers.UpdateableClassifier;
import weka.classifiers.lazy.kstar.KStarCache;
import weka.classifiers.lazy.kstar.KStarConstants;
import weka.classifiers.lazy.kstar.KStarNominalAttribute;
import weka.classifiers.lazy.kstar.KStarNumericAttribute;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function.  It differs from other instance-based learners in that it uses an entropy-based distance function.
*
* For more information on K*, see
*
* John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, 108-114, 1995. *

* * BibTeX: *

 * @inproceedings{Cleary1995,
 *    author = {John G. Cleary and Leonard E. Trigg},
 *    booktitle = {12th International Conference on Machine Learning},
 *    pages = {108-114},
 *    title = {K*: An Instance-based Learner Using an Entropic Distance Measure},
 *    year = {1995}
 * }
 * 
*

* * Valid options are:

* *

 -B <num>
 *  Manual blend setting (default 20%)
 * 
* *
 -E
 *  Enable entropic auto-blend setting (symbolic class only)
 * 
* *
 -M <char>
 *  Specify the missing value treatment mode (default a)
 *  Valid options are: a(verage), d(elete), m(axdiff), n(ormal)
 * 
* * * @author Len Trigg ([email protected]) * @author Abdelaziz Mahoui ([email protected]) - Java port * @version $Revision: 5525 $ */ public class KStar extends Classifier implements KStarConstants, UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 332458330800479083L; /** The training instances used for classification. */ protected Instances m_Train; /** The number of instances in the dataset */ protected int m_NumInstances; /** The number of class values */ protected int m_NumClasses; /** The number of attributes */ protected int m_NumAttributes; /** The class attribute type */ protected int m_ClassType; /** Table of random class value colomns */ protected int [][] m_RandClassCols; /** Flag turning on and off the computation of random class colomns */ protected int m_ComputeRandomCols = ON; /** Flag turning on and off the initialisation of config variables */ protected int m_InitFlag = ON; /** * A custom data structure for caching distinct attribute values * and their scale factor or stop parameter. */ protected KStarCache [] m_Cache; /** missing value treatment */ protected int m_MissingMode = M_AVERAGE; /** 0 = use specified blend, 1 = entropic blend setting */ protected int m_BlendMethod = B_SPHERE; /** default sphere of influence blend setting */ protected int m_GlobalBlend = 20; /** Define possible missing value handling methods */ public static final Tag [] TAGS_MISSING = { new Tag(M_DELETE, "Ignore the instances with missing values"), new Tag(M_MAXDIFF, "Treat missing values as maximally different"), new Tag(M_NORMAL, "Normalize over the attributes"), new Tag(M_AVERAGE, "Average column entropy curves") }; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "K* is an instance-based classifier, that is the class of a test " + "instance is based upon the class of those training instances " + "similar to it, as determined by some similarity function. It differs " + "from other instance-based learners in that it uses an entropy-based " + "distance function.\n\n" + "For more information on K*, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "John G. Cleary and Leonard E. Trigg"); result.setValue(Field.TITLE, "K*: An Instance-based Learner Using an Entropic Distance Measure"); result.setValue(Field.BOOKTITLE, "12th International Conference on Machine Learning"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.PAGES, "108-114"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { String debug = "(KStar.buildClassifier) "; // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_Train = new Instances(instances, 0, instances.numInstances()); // initializes class attributes ** java-speaking! :-) ** init_m_Attributes(); } /** * Adds the supplied instance to the training set * * @param instance the instance to add * @throws Exception if instance could not be incorporated successfully */ public void updateClassifier(Instance instance) throws Exception { String debug = "(KStar.updateClassifier) "; if (m_Train.equalHeaders(instance.dataset()) == false) throw new Exception("Incompatible instance types"); if ( instance.classIsMissing() ) return; m_Train.add(instance); // update relevant attributes ... update_m_Attributes(); } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if an error occurred during the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { String debug = "(KStar.distributionForInstance) "; double transProb = 0.0, temp = 0.0; double [] classProbability = new double[m_NumClasses]; double [] predictedValue = new double[1]; // initialization ... for (int i=0; i")); optVector.addElement(new Option( "\tEnable entropic auto-blend setting (symbolic class only)\n", "E", 0, "-E")); optVector.addElement(new Option( "\tSpecify the missing value treatment mode (default a)\n" +"\tValid options are: a(verage), d(elete), m(axdiff), n(ormal)\n", "M", 1,"-M ")); return optVector.elements(); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String globalBlendTipText() { return "The parameter for global blending. Values are restricted to [0,100]."; } /** * Set the global blend parameter * @param b the value for global blending */ public void setGlobalBlend(int b) { m_GlobalBlend = b; if ( m_GlobalBlend > 100 ) { m_GlobalBlend = 100; } if ( m_GlobalBlend < 0 ) { m_GlobalBlend = 0; } } /** * Get the value of the global blend parameter * @return the value of the global blend parameter */ public int getGlobalBlend() { return m_GlobalBlend; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String entropicAutoBlendTipText() { return "Whether entropy-based blending is to be used."; } /** * Set whether entropic blending is to be used. * @param e true if entropic blending is to be used */ public void setEntropicAutoBlend(boolean e) { if (e) { m_BlendMethod = B_ENTROPY; } else { m_BlendMethod = B_SPHERE; } } /** * Get whether entropic blending being used * @return true if entropic blending is used */ public boolean getEntropicAutoBlend() { if (m_BlendMethod == B_ENTROPY) { return true; } return false; } /** * Parses a given list of options.

* * Valid options are:

* *

 -B <num>
   *  Manual blend setting (default 20%)
   * 
* *
 -E
   *  Enable entropic auto-blend setting (symbolic class only)
   * 
* *
 -M <char>
   *  Specify the missing value treatment mode (default a)
   *  Valid options are: a(verage), d(elete), m(axdiff), n(ormal)
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String debug = "(KStar.setOptions)"; String blendStr = Utils.getOption('B', options); if (blendStr.length() != 0) { setGlobalBlend(Integer.parseInt(blendStr)); } setEntropicAutoBlend(Utils.getFlag('E', options)); String missingModeStr = Utils.getOption('M', options); if (missingModeStr.length() != 0) { switch ( missingModeStr.charAt(0) ) { case 'a': setMissingMode(new SelectedTag(M_AVERAGE, TAGS_MISSING)); break; case 'd': setMissingMode(new SelectedTag(M_DELETE, TAGS_MISSING)); break; case 'm': setMissingMode(new SelectedTag(M_MAXDIFF, TAGS_MISSING)); break; case 'n': setMissingMode(new SelectedTag(M_NORMAL, TAGS_MISSING)); break; default: setMissingMode(new SelectedTag(M_AVERAGE, TAGS_MISSING)); } } Utils.checkForRemainingOptions(options); } /** * Gets the current settings of K*. * * @return an array of strings suitable for passing to setOptions() */ public String [] getOptions() { // -B -E -M String [] options = new String [ 5 ]; int itr = 0; options[itr++] = "-B"; options[itr++] = "" + m_GlobalBlend; if (getEntropicAutoBlend()) { options[itr++] = "-E"; } options[itr++] = "-M"; if (m_MissingMode == M_AVERAGE) { options[itr++] = "" + "a"; } else if (m_MissingMode == M_DELETE) { options[itr++] = "" + "d"; } else if (m_MissingMode == M_MAXDIFF) { options[itr++] = "" + "m"; } else if (m_MissingMode == M_NORMAL) { options[itr++] = "" + "n"; } while (itr < options.length) { options[itr++] = ""; } return options; } /** * Returns a description of this classifier. * * @return a description of this classifier as a string. */ public String toString() { StringBuffer st = new StringBuffer(); st.append("KStar Beta Verion (0.1b).\n" +"Copyright (c) 1995-97 by Len Trigg ([email protected]).\n" +"Java port to Weka by Abdelaziz Mahoui " +"([email protected]).\n\nKStar options : "); String [] ops = getOptions(); for (int i=0;i 0; j--) { index = (int) ( generator.nextDouble() * (double)j ); temp = newArray[j]; newArray[j] = newArray[index]; newArray[index] = temp; } return newArray; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5525 $"); } } // class end




© 2015 - 2025 Weber Informatics LLC | Privacy Policy