weka.classifiers.lazy.LWL Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* LWL.java
* Copyright (C) 1999, 2002, 2003 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.lazy;
import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.neighboursearch.LinearNNSearch;
import weka.core.neighboursearch.NearestNeighbourSearch;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Enumeration;
import java.util.Vector;
/**
* Locally weighted learning. Uses an instance-based algorithm to assign instance weights which are then used by a specified WeightedInstancesHandler.
* Can do classification (e.g. using naive Bayes) or regression (e.g. using linear regression).
*
* For more info, see
*
* Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelligence, 249-256, 2003.
*
* C. Atkeson, A. Moore, S. Schaal (1996). Locally weighted learning. AI Review..
*
*
* BibTeX:
*
* @inproceedings{Frank2003,
* author = {Eibe Frank and Mark Hall and Bernhard Pfahringer},
* booktitle = {19th Conference in Uncertainty in Artificial Intelligence},
* pages = {249-256},
* publisher = {Morgan Kaufmann},
* title = {Locally Weighted Naive Bayes},
* year = {2003}
* }
*
* @article{Atkeson1996,
* author = {C. Atkeson and A. Moore and S. Schaal},
* journal = {AI Review},
* title = {Locally weighted learning},
* year = {1996}
* }
*
*
*
* Valid options are:
*
* -A
* The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
*
*
* -K <number of neighbours>
* Set the number of neighbours used to set the kernel bandwidth.
* (default all)
*
* -U <number of weighting method>
* Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
* 2=Tricube, 3=Inverse, 4=Gaussian.
* (default 0 = Linear)
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.trees.DecisionStump)
*
*
* Options specific to classifier weka.classifiers.trees.DecisionStump:
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Len Trigg ([email protected])
* @author Eibe Frank ([email protected])
* @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz)
* @version $Revision: 5011 $
*/
public class LWL
extends SingleClassifierEnhancer
implements UpdateableClassifier, WeightedInstancesHandler,
TechnicalInformationHandler {
/** for serialization. */
static final long serialVersionUID = 1979797405383665815L;
/** The training instances used for classification. */
protected Instances m_Train;
/** The number of neighbours used to select the kernel bandwidth. */
protected int m_kNN = -1;
/** The weighting kernel method currently selected. */
protected int m_WeightKernel = LINEAR;
/** True if m_kNN should be set to all instances. */
protected boolean m_UseAllK = true;
/** The nearest neighbour search algorithm to use.
* (Default: weka.core.neighboursearch.LinearNNSearch)
*/
protected NearestNeighbourSearch m_NNSearch = new LinearNNSearch();
/** The available kernel weighting methods. */
protected static final int LINEAR = 0;
protected static final int EPANECHNIKOV = 1;
protected static final int TRICUBE = 2;
protected static final int INVERSE = 3;
protected static final int GAUSS = 4;
protected static final int CONSTANT = 5;
/** a ZeroR model in case no model can be built from the data. */
protected Classifier m_ZeroR;
/**
* Returns a string describing classifier.
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"Locally weighted learning. Uses an instance-based algorithm to "
+ "assign instance weights which are then used by a specified "
+ "WeightedInstancesHandler.\n"
+ "Can do classification (e.g. using naive Bayes) or regression "
+ "(e.g. using linear regression).\n\n"
+ "For more info, see\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall and Bernhard Pfahringer");
result.setValue(Field.YEAR, "2003");
result.setValue(Field.TITLE, "Locally Weighted Naive Bayes");
result.setValue(Field.BOOKTITLE, "19th Conference in Uncertainty in Artificial Intelligence");
result.setValue(Field.PAGES, "249-256");
result.setValue(Field.PUBLISHER, "Morgan Kaufmann");
additional = result.add(Type.ARTICLE);
additional.setValue(Field.AUTHOR, "C. Atkeson and A. Moore and S. Schaal");
additional.setValue(Field.YEAR, "1996");
additional.setValue(Field.TITLE, "Locally weighted learning");
additional.setValue(Field.JOURNAL, "AI Review");
return result;
}
/**
* Constructor.
*/
public LWL() {
m_Classifier = new weka.classifiers.trees.DecisionStump();
}
/**
* String describing default classifier.
*
* @return the default classifier classname
*/
protected String defaultClassifierString() {
return "weka.classifiers.trees.DecisionStump";
}
/**
* Returns an enumeration of the additional measure names
* produced by the neighbour search algorithm.
* @return an enumeration of the measure names
*/
public Enumeration enumerateMeasures() {
return m_NNSearch.enumerateMeasures();
}
/**
* Returns the value of the named measure from the
* neighbour search algorithm.
* @param additionalMeasureName the name of the measure to query for its value
* @return the value of the named measure
* @throws IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
return m_NNSearch.getMeasure(additionalMeasureName);
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(3);
newVector.addElement(new Option("\tThe nearest neighbour search " +
"algorithm to use " +
"(default: weka.core.neighboursearch.LinearNNSearch).\n",
"A", 0, "-A"));
newVector.addElement(new Option("\tSet the number of neighbours used to set"
+" the kernel bandwidth.\n"
+"\t(default all)",
"K", 1, "-K "));
newVector.addElement(new Option("\tSet the weighting kernel shape to use."
+" 0=Linear, 1=Epanechnikov,\n"
+"\t2=Tricube, 3=Inverse, 4=Gaussian.\n"
+"\t(default 0 = Linear)",
"U", 1,"-U "));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -A
* The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
*
*
* -K <number of neighbours>
* Set the number of neighbours used to set the kernel bandwidth.
* (default all)
*
* -U <number of weighting method>
* Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
* 2=Tricube, 3=Inverse, 4=Gaussian.
* (default 0 = Linear)
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.trees.DecisionStump)
*
*
* Options specific to classifier weka.classifiers.trees.DecisionStump:
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String knnString = Utils.getOption('K', options);
if (knnString.length() != 0) {
setKNN(Integer.parseInt(knnString));
} else {
setKNN(-1);
}
String weightString = Utils.getOption('U', options);
if (weightString.length() != 0) {
setWeightingKernel(Integer.parseInt(weightString));
} else {
setWeightingKernel(LINEAR);
}
String nnSearchClass = Utils.getOption('A', options);
if(nnSearchClass.length() != 0) {
String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
if(nnSearchClassSpec.length == 0) {
throw new Exception("Invalid NearestNeighbourSearch algorithm " +
"specification string.");
}
String className = nnSearchClassSpec[0];
nnSearchClassSpec[0] = "";
setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
Utils.forName( NearestNeighbourSearch.class,
className,
nnSearchClassSpec)
);
}
else
this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());
super.setOptions(options);
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 6];
int current = 0;
options[current++] = "-U"; options[current++] = "" + getWeightingKernel();
if ( (getKNN() == 0) && m_UseAllK) {
options[current++] = "-K"; options[current++] = "-1";
}
else {
options[current++] = "-K"; options[current++] = "" + getKNN();
}
options[current++] = "-A";
options[current++] = m_NNSearch.getClass().getName()+" "+Utils.joinOptions(m_NNSearch.getOptions());
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
return options;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String KNNTipText() {
return "How many neighbours are used to determine the width of the "
+ "weighting function (<= 0 means all neighbours).";
}
/**
* Sets the number of neighbours used for kernel bandwidth setting.
* The bandwidth is taken as the distance to the kth neighbour.
*
* @param knn the number of neighbours included inside the kernel
* bandwidth, or 0 to specify using all neighbors.
*/
public void setKNN(int knn) {
m_kNN = knn;
if (knn <= 0) {
m_kNN = 0;
m_UseAllK = true;
} else {
m_UseAllK = false;
}
}
/**
* Gets the number of neighbours used for kernel bandwidth setting.
* The bandwidth is taken as the distance to the kth neighbour.
*
* @return the number of neighbours included inside the kernel
* bandwidth, or 0 for all neighbours
*/
public int getKNN() {
return m_kNN;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String weightingKernelTipText() {
return "Determines weighting function. [0 = Linear, 1 = Epnechnikov,"+
"2 = Tricube, 3 = Inverse, 4 = Gaussian and 5 = Constant. "+
"(default 0 = Linear)].";
}
/**
* Sets the kernel weighting method to use. Must be one of LINEAR,
* EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT, other values
* are ignored.
*
* @param kernel the new kernel method to use. Must be one of LINEAR,
* EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT.
*/
public void setWeightingKernel(int kernel) {
if ((kernel != LINEAR)
&& (kernel != EPANECHNIKOV)
&& (kernel != TRICUBE)
&& (kernel != INVERSE)
&& (kernel != GAUSS)
&& (kernel != CONSTANT)) {
return;
}
m_WeightKernel = kernel;
}
/**
* Gets the kernel weighting method to use.
*
* @return the new kernel method to use. Will be one of LINEAR,
* EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT.
*/
public int getWeightingKernel() {
return m_WeightKernel;
}
/**
* Returns the tip text for this property.
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String nearestNeighbourSearchAlgorithmTipText() {
return "The nearest neighbour search algorithm to use (Default: LinearNN).";
}
/**
* Returns the current nearestNeighbourSearch algorithm in use.
* @return the NearestNeighbourSearch algorithm currently in use.
*/
public NearestNeighbourSearch getNearestNeighbourSearchAlgorithm() {
return m_NNSearch;
}
/**
* Sets the nearestNeighbourSearch algorithm to be used for finding nearest
* neighbour(s).
* @param nearestNeighbourSearchAlgorithm - The NearestNeighbourSearch class.
*/
public void setNearestNeighbourSearchAlgorithm(NearestNeighbourSearch nearestNeighbourSearchAlgorithm) {
m_NNSearch = nearestNeighbourSearchAlgorithm;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result;
if (m_Classifier != null)
result = m_Classifier.getCapabilities();
else
result = super.getCapabilities();
result.setMinimumNumberInstances(0);
// set dependencies
for (Capability cap: Capability.values())
result.enableDependency(cap);
return result;
}
/**
* Generates the classifier.
*
* @param instances set of instances serving as training data
* @throws Exception if the classifier has not been generated successfully
*/
public void buildClassifier(Instances instances) throws Exception {
if (!(m_Classifier instanceof WeightedInstancesHandler)) {
throw new IllegalArgumentException("Classifier must be a "
+ "WeightedInstancesHandler!");
}
// can classifier handle the data?
getCapabilities().testWithFail(instances);
// remove instances with missing class
instances = new Instances(instances);
instances.deleteWithMissingClass();
// only class? -> build ZeroR model
if (instances.numAttributes() == 1) {
System.err.println(
"Cannot build model (only class attribute present in data!), "
+ "using ZeroR model instead!");
m_ZeroR = new weka.classifiers.rules.ZeroR();
m_ZeroR.buildClassifier(instances);
return;
}
else {
m_ZeroR = null;
}
m_Train = new Instances(instances, 0, instances.numInstances());
m_NNSearch.setInstances(m_Train);
}
/**
* Adds the supplied instance to the training set.
*
* @param instance the instance to add
* @throws Exception if instance could not be incorporated
* successfully
*/
public void updateClassifier(Instance instance) throws Exception {
if (m_Train == null) {
throw new Exception("No training instance structure set!");
}
else if (m_Train.equalHeaders(instance.dataset()) == false) {
throw new Exception("Incompatible instance types");
}
if (!instance.classIsMissing()) {
m_NNSearch.update(instance);
m_Train.add(instance);
}
}
/**
* Calculates the class membership probabilities for the given test instance.
*
* @param instance the instance to be classified
* @return preedicted class probability distribution
* @throws Exception if distribution can't be computed successfully
*/
public double[] distributionForInstance(Instance instance) throws Exception {
// default model?
if (m_ZeroR != null) {
return m_ZeroR.distributionForInstance(instance);
}
if (m_Train.numInstances() == 0) {
throw new Exception("No training instances!");
}
m_NNSearch.addInstanceInfo(instance);
int k = m_Train.numInstances();
if( (!m_UseAllK && (m_kNN < k)) &&
!(m_WeightKernel==INVERSE ||
m_WeightKernel==GAUSS) ) {
k = m_kNN;
}
Instances neighbours = m_NNSearch.kNearestNeighbours(instance, k);
double distances[] = m_NNSearch.getDistances();
if (m_Debug) {
System.out.println("Test Instance: "+instance);
System.out.println("For "+k+" kept " + neighbours.numInstances() + " out of " +
m_Train.numInstances() + " instances.");
}
//IF LinearNN has skipped so much that distances.length)
k = distances.length;
if (m_Debug) {
System.out.println("Instance Distances");
for (int i = 0; i < distances.length; i++) {
System.out.println("" + distances[i]);
}
}
// Determine the bandwidth
double bandwidth = distances[k-1];
// Check for bandwidth zero
if (bandwidth <= 0) {
//if the kth distance is zero than give all instances the same weight
for(int i=0; i < distances.length; i++)
distances[i] = 1;
} else {
// Rescale the distances by the bandwidth
for (int i = 0; i < distances.length; i++)
distances[i] = distances[i] / bandwidth;
}
// Pass the distances through a weighting kernel
for (int i = 0; i < distances.length; i++) {
switch (m_WeightKernel) {
case LINEAR:
distances[i] = 1.0001 - distances[i];
break;
case EPANECHNIKOV:
distances[i] = 3/4D*(1.0001 - distances[i]*distances[i]);
break;
case TRICUBE:
distances[i] = Math.pow( (1.0001 - Math.pow(distances[i], 3)), 3 );
break;
case CONSTANT:
//System.err.println("using constant kernel");
distances[i] = 1;
break;
case INVERSE:
distances[i] = 1.0 / (1.0 + distances[i]);
break;
case GAUSS:
distances[i] = Math.exp(-distances[i] * distances[i]);
break;
}
}
if (m_Debug) {
System.out.println("Instance Weights");
for (int i = 0; i < distances.length; i++) {
System.out.println("" + distances[i]);
}
}
// Set the weights on the training data
double sumOfWeights = 0, newSumOfWeights = 0;
for (int i = 0; i < distances.length; i++) {
double weight = distances[i];
Instance inst = (Instance) neighbours.instance(i);
sumOfWeights += inst.weight();
newSumOfWeights += inst.weight() * weight;
inst.setWeight(inst.weight() * weight);
//weightedTrain.add(newInst);
}
// Rescale weights
for (int i = 0; i < neighbours.numInstances(); i++) {
Instance inst = neighbours.instance(i);
inst.setWeight(inst.weight() * sumOfWeights / newSumOfWeights);
}
// Create a weighted classifier
m_Classifier.buildClassifier(neighbours);
if (m_Debug) {
System.out.println("Classifying test instance: " + instance);
System.out.println("Built base classifier:\n"
+ m_Classifier.toString());
}
// Return the classifier's predictions
return m_Classifier.distributionForInstance(instance);
}
/**
* Returns a description of this classifier.
*
* @return a description of this classifier as a string.
*/
public String toString() {
// only ZeroR model?
if (m_ZeroR != null) {
StringBuffer buf = new StringBuffer();
buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n");
buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n");
buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n");
buf.append(m_ZeroR.toString());
return buf.toString();
}
if (m_Train == null) {
return "Locally weighted learning: No model built yet.";
}
String result = "Locally weighted learning\n"
+ "===========================\n";
result += "Using classifier: " + m_Classifier.getClass().getName() + "\n";
switch (m_WeightKernel) {
case LINEAR:
result += "Using linear weighting kernels\n";
break;
case EPANECHNIKOV:
result += "Using epanechnikov weighting kernels\n";
break;
case TRICUBE:
result += "Using tricube weighting kernels\n";
break;
case INVERSE:
result += "Using inverse-distance weighting kernels\n";
break;
case GAUSS:
result += "Using gaussian weighting kernels\n";
break;
case CONSTANT:
result += "Using constant weighting kernels\n";
break;
}
result += "Using " + (m_UseAllK ? "all" : "" + m_kNN) + " neighbours";
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5011 $");
}
/**
* Main method for testing this class.
*
* @param argv the options
*/
public static void main(String [] argv) {
runClassifier(new LWL(), argv);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy