All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.lazy.LWL Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LWL.java
 *    Copyright (C) 1999, 2002, 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.lazy;

import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.neighboursearch.LinearNNSearch;
import weka.core.neighboursearch.NearestNeighbourSearch;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Locally weighted learning. Uses an instance-based algorithm to assign instance weights which are then used by a specified WeightedInstancesHandler.
* Can do classification (e.g. using naive Bayes) or regression (e.g. using linear regression).
*
* For more info, see
*
* Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally Weighted Naive Bayes. In: 19th Conference in Uncertainty in Artificial Intelligence, 249-256, 2003.
*
* C. Atkeson, A. Moore, S. Schaal (1996). Locally weighted learning. AI Review.. *

* * BibTeX: *

 * @inproceedings{Frank2003,
 *    author = {Eibe Frank and Mark Hall and Bernhard Pfahringer},
 *    booktitle = {19th Conference in Uncertainty in Artificial Intelligence},
 *    pages = {249-256},
 *    publisher = {Morgan Kaufmann},
 *    title = {Locally Weighted Naive Bayes},
 *    year = {2003}
 * }
 * 
 * @article{Atkeson1996,
 *    author = {C. Atkeson and A. Moore and S. Schaal},
 *    journal = {AI Review},
 *    title = {Locally weighted learning},
 *    year = {1996}
 * }
 * 
*

* * Valid options are:

* *

 -A
 *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
 * 
* *
 -K <number of neighbours>
 *  Set the number of neighbours used to set the kernel bandwidth.
 *  (default all)
* *
 -U <number of weighting method>
 *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
 *  2=Tricube, 3=Inverse, 4=Gaussian.
 *  (default 0 = Linear)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.DecisionStump)
* *
 
 * Options specific to classifier weka.classifiers.trees.DecisionStump:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Len Trigg ([email protected]) * @author Eibe Frank ([email protected]) * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 5011 $ */ public class LWL extends SingleClassifierEnhancer implements UpdateableClassifier, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization. */ static final long serialVersionUID = 1979797405383665815L; /** The training instances used for classification. */ protected Instances m_Train; /** The number of neighbours used to select the kernel bandwidth. */ protected int m_kNN = -1; /** The weighting kernel method currently selected. */ protected int m_WeightKernel = LINEAR; /** True if m_kNN should be set to all instances. */ protected boolean m_UseAllK = true; /** The nearest neighbour search algorithm to use. * (Default: weka.core.neighboursearch.LinearNNSearch) */ protected NearestNeighbourSearch m_NNSearch = new LinearNNSearch(); /** The available kernel weighting methods. */ protected static final int LINEAR = 0; protected static final int EPANECHNIKOV = 1; protected static final int TRICUBE = 2; protected static final int INVERSE = 3; protected static final int GAUSS = 4; protected static final int CONSTANT = 5; /** a ZeroR model in case no model can be built from the data. */ protected Classifier m_ZeroR; /** * Returns a string describing classifier. * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Locally weighted learning. Uses an instance-based algorithm to " + "assign instance weights which are then used by a specified " + "WeightedInstancesHandler.\n" + "Can do classification (e.g. using naive Bayes) or regression " + "(e.g. using linear regression).\n\n" + "For more info, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall and Bernhard Pfahringer"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.TITLE, "Locally Weighted Naive Bayes"); result.setValue(Field.BOOKTITLE, "19th Conference in Uncertainty in Artificial Intelligence"); result.setValue(Field.PAGES, "249-256"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "C. Atkeson and A. Moore and S. Schaal"); additional.setValue(Field.YEAR, "1996"); additional.setValue(Field.TITLE, "Locally weighted learning"); additional.setValue(Field.JOURNAL, "AI Review"); return result; } /** * Constructor. */ public LWL() { m_Classifier = new weka.classifiers.trees.DecisionStump(); } /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.trees.DecisionStump"; } /** * Returns an enumeration of the additional measure names * produced by the neighbour search algorithm. * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { return m_NNSearch.enumerateMeasures(); } /** * Returns the value of the named measure from the * neighbour search algorithm. * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { return m_NNSearch.getMeasure(additionalMeasureName); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option("\tThe nearest neighbour search " + "algorithm to use " + "(default: weka.core.neighboursearch.LinearNNSearch).\n", "A", 0, "-A")); newVector.addElement(new Option("\tSet the number of neighbours used to set" +" the kernel bandwidth.\n" +"\t(default all)", "K", 1, "-K ")); newVector.addElement(new Option("\tSet the weighting kernel shape to use." +" 0=Linear, 1=Epanechnikov,\n" +"\t2=Tricube, 3=Inverse, 4=Gaussian.\n" +"\t(default 0 = Linear)", "U", 1,"-U ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -A
   *  The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
   * 
* *
 -K <number of neighbours>
   *  Set the number of neighbours used to set the kernel bandwidth.
   *  (default all)
* *
 -U <number of weighting method>
   *  Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
   *  2=Tricube, 3=Inverse, 4=Gaussian.
   *  (default 0 = Linear)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.trees.DecisionStump)
* *
 
   * Options specific to classifier weka.classifiers.trees.DecisionStump:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String knnString = Utils.getOption('K', options); if (knnString.length() != 0) { setKNN(Integer.parseInt(knnString)); } else { setKNN(-1); } String weightString = Utils.getOption('U', options); if (weightString.length() != 0) { setWeightingKernel(Integer.parseInt(weightString)); } else { setWeightingKernel(LINEAR); } String nnSearchClass = Utils.getOption('A', options); if(nnSearchClass.length() != 0) { String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass); if(nnSearchClassSpec.length == 0) { throw new Exception("Invalid NearestNeighbourSearch algorithm " + "specification string."); } String className = nnSearchClassSpec[0]; nnSearchClassSpec[0] = ""; setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch) Utils.forName( NearestNeighbourSearch.class, className, nnSearchClassSpec) ); } else this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch()); super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 6]; int current = 0; options[current++] = "-U"; options[current++] = "" + getWeightingKernel(); if ( (getKNN() == 0) && m_UseAllK) { options[current++] = "-K"; options[current++] = "-1"; } else { options[current++] = "-K"; options[current++] = "" + getKNN(); } options[current++] = "-A"; options[current++] = m_NNSearch.getClass().getName()+" "+Utils.joinOptions(m_NNSearch.getOptions()); System.arraycopy(superOptions, 0, options, current, superOptions.length); return options; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String KNNTipText() { return "How many neighbours are used to determine the width of the " + "weighting function (<= 0 means all neighbours)."; } /** * Sets the number of neighbours used for kernel bandwidth setting. * The bandwidth is taken as the distance to the kth neighbour. * * @param knn the number of neighbours included inside the kernel * bandwidth, or 0 to specify using all neighbors. */ public void setKNN(int knn) { m_kNN = knn; if (knn <= 0) { m_kNN = 0; m_UseAllK = true; } else { m_UseAllK = false; } } /** * Gets the number of neighbours used for kernel bandwidth setting. * The bandwidth is taken as the distance to the kth neighbour. * * @return the number of neighbours included inside the kernel * bandwidth, or 0 for all neighbours */ public int getKNN() { return m_kNN; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightingKernelTipText() { return "Determines weighting function. [0 = Linear, 1 = Epnechnikov,"+ "2 = Tricube, 3 = Inverse, 4 = Gaussian and 5 = Constant. "+ "(default 0 = Linear)]."; } /** * Sets the kernel weighting method to use. Must be one of LINEAR, * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT, other values * are ignored. * * @param kernel the new kernel method to use. Must be one of LINEAR, * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT. */ public void setWeightingKernel(int kernel) { if ((kernel != LINEAR) && (kernel != EPANECHNIKOV) && (kernel != TRICUBE) && (kernel != INVERSE) && (kernel != GAUSS) && (kernel != CONSTANT)) { return; } m_WeightKernel = kernel; } /** * Gets the kernel weighting method to use. * * @return the new kernel method to use. Will be one of LINEAR, * EPANECHNIKOV, TRICUBE, INVERSE, GAUSS or CONSTANT. */ public int getWeightingKernel() { return m_WeightKernel; } /** * Returns the tip text for this property. * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String nearestNeighbourSearchAlgorithmTipText() { return "The nearest neighbour search algorithm to use (Default: LinearNN)."; } /** * Returns the current nearestNeighbourSearch algorithm in use. * @return the NearestNeighbourSearch algorithm currently in use. */ public NearestNeighbourSearch getNearestNeighbourSearchAlgorithm() { return m_NNSearch; } /** * Sets the nearestNeighbourSearch algorithm to be used for finding nearest * neighbour(s). * @param nearestNeighbourSearchAlgorithm - The NearestNeighbourSearch class. */ public void setNearestNeighbourSearchAlgorithm(NearestNeighbourSearch nearestNeighbourSearchAlgorithm) { m_NNSearch = nearestNeighbourSearchAlgorithm; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result; if (m_Classifier != null) result = m_Classifier.getCapabilities(); else result = super.getCapabilities(); result.setMinimumNumberInstances(0); // set dependencies for (Capability cap: Capability.values()) result.enableDependency(cap); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { if (!(m_Classifier instanceof WeightedInstancesHandler)) { throw new IllegalArgumentException("Classifier must be a " + "WeightedInstancesHandler!"); } // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); // only class? -> build ZeroR model if (instances.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(instances); return; } else { m_ZeroR = null; } m_Train = new Instances(instances, 0, instances.numInstances()); m_NNSearch.setInstances(m_Train); } /** * Adds the supplied instance to the training set. * * @param instance the instance to add * @throws Exception if instance could not be incorporated * successfully */ public void updateClassifier(Instance instance) throws Exception { if (m_Train == null) { throw new Exception("No training instance structure set!"); } else if (m_Train.equalHeaders(instance.dataset()) == false) { throw new Exception("Incompatible instance types"); } if (!instance.classIsMissing()) { m_NNSearch.update(instance); m_Train.add(instance); } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return preedicted class probability distribution * @throws Exception if distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { // default model? if (m_ZeroR != null) { return m_ZeroR.distributionForInstance(instance); } if (m_Train.numInstances() == 0) { throw new Exception("No training instances!"); } m_NNSearch.addInstanceInfo(instance); int k = m_Train.numInstances(); if( (!m_UseAllK && (m_kNN < k)) && !(m_WeightKernel==INVERSE || m_WeightKernel==GAUSS) ) { k = m_kNN; } Instances neighbours = m_NNSearch.kNearestNeighbours(instance, k); double distances[] = m_NNSearch.getDistances(); if (m_Debug) { System.out.println("Test Instance: "+instance); System.out.println("For "+k+" kept " + neighbours.numInstances() + " out of " + m_Train.numInstances() + " instances."); } //IF LinearNN has skipped so much that distances.length) k = distances.length; if (m_Debug) { System.out.println("Instance Distances"); for (int i = 0; i < distances.length; i++) { System.out.println("" + distances[i]); } } // Determine the bandwidth double bandwidth = distances[k-1]; // Check for bandwidth zero if (bandwidth <= 0) { //if the kth distance is zero than give all instances the same weight for(int i=0; i < distances.length; i++) distances[i] = 1; } else { // Rescale the distances by the bandwidth for (int i = 0; i < distances.length; i++) distances[i] = distances[i] / bandwidth; } // Pass the distances through a weighting kernel for (int i = 0; i < distances.length; i++) { switch (m_WeightKernel) { case LINEAR: distances[i] = 1.0001 - distances[i]; break; case EPANECHNIKOV: distances[i] = 3/4D*(1.0001 - distances[i]*distances[i]); break; case TRICUBE: distances[i] = Math.pow( (1.0001 - Math.pow(distances[i], 3)), 3 ); break; case CONSTANT: //System.err.println("using constant kernel"); distances[i] = 1; break; case INVERSE: distances[i] = 1.0 / (1.0 + distances[i]); break; case GAUSS: distances[i] = Math.exp(-distances[i] * distances[i]); break; } } if (m_Debug) { System.out.println("Instance Weights"); for (int i = 0; i < distances.length; i++) { System.out.println("" + distances[i]); } } // Set the weights on the training data double sumOfWeights = 0, newSumOfWeights = 0; for (int i = 0; i < distances.length; i++) { double weight = distances[i]; Instance inst = (Instance) neighbours.instance(i); sumOfWeights += inst.weight(); newSumOfWeights += inst.weight() * weight; inst.setWeight(inst.weight() * weight); //weightedTrain.add(newInst); } // Rescale weights for (int i = 0; i < neighbours.numInstances(); i++) { Instance inst = neighbours.instance(i); inst.setWeight(inst.weight() * sumOfWeights / newSumOfWeights); } // Create a weighted classifier m_Classifier.buildClassifier(neighbours); if (m_Debug) { System.out.println("Classifying test instance: " + instance); System.out.println("Built base classifier:\n" + m_Classifier.toString()); } // Return the classifier's predictions return m_Classifier.distributionForInstance(instance); } /** * Returns a description of this classifier. * * @return a description of this classifier as a string. */ public String toString() { // only ZeroR model? if (m_ZeroR != null) { StringBuffer buf = new StringBuffer(); buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); buf.append(m_ZeroR.toString()); return buf.toString(); } if (m_Train == null) { return "Locally weighted learning: No model built yet."; } String result = "Locally weighted learning\n" + "===========================\n"; result += "Using classifier: " + m_Classifier.getClass().getName() + "\n"; switch (m_WeightKernel) { case LINEAR: result += "Using linear weighting kernels\n"; break; case EPANECHNIKOV: result += "Using epanechnikov weighting kernels\n"; break; case TRICUBE: result += "Using tricube weighting kernels\n"; break; case INVERSE: result += "Using inverse-distance weighting kernels\n"; break; case GAUSS: result += "Using gaussian weighting kernels\n"; break; case CONSTANT: result += "Using constant weighting kernels\n"; break; } result += "Using " + (m_UseAllK ? "all" : "" + m_kNN) + " neighbours"; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5011 $"); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new LWL(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy