All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.CostSensitiveClassifier Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    CostSensitiveClassifier.java
 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.StringReader;
import java.io.StringWriter;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * A metaclassifier that makes its base classifier cost-sensitive. Two methods can be used to introduce cost-sensitivity: reweighting training instances according to the total cost assigned to each class; or predicting the class with minimum expected misclassification cost (rather than the most likely class). Performance can often be improved by using a Bagged classifier to improve the probability estimates of the base classifier.
 * 

* * Valid options are:

* *

 -M
 *  Minimize expected misclassification cost. Default is to
 *  reweight training instances according to costs per class
* *
 -C <cost file name>
 *  File name of a cost matrix to use. If this is not supplied,
 *  a cost matrix will be loaded on demand. The name of the
 *  on-demand file is the relation name of the training data
 *  plus ".cost", and the path to the on-demand file is
 *  specified with the -N option.
* *
 -N <directory>
 *  Name of a directory to search for cost files when loading
 *  costs on demand (default current directory).
* *
 -cost-matrix <matrix>
 *  The cost matrix in Matlab single line format.
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.rules.ZeroR)
* *
 
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @author Len Trigg ([email protected]) * @version $Revision: 1.29 $ */ public class CostSensitiveClassifier extends RandomizableSingleClassifierEnhancer implements OptionHandler, Drawable { /** for serialization */ static final long serialVersionUID = -720658209263002404L; /** load cost matrix on demand */ public static final int MATRIX_ON_DEMAND = 1; /** use explicit cost matrix */ public static final int MATRIX_SUPPLIED = 2; /** Specify possible sources of the cost matrix */ public static final Tag [] TAGS_MATRIX_SOURCE = { new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"), new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix") }; /** Indicates the current cost matrix source */ protected int m_MatrixSource = MATRIX_ON_DEMAND; /** * The directory used when loading cost files on demand, null indicates * current directory */ protected File m_OnDemandDirectory = new File(System.getProperty("user.dir")); /** The name of the cost file, for command line options */ protected String m_CostFile; /** The cost matrix */ protected CostMatrix m_CostMatrix = new CostMatrix(1); /** * True if the costs should be used by selecting the minimum expected * cost (false means weight training data by the costs) */ protected boolean m_MinimizeExpectedCost; /** * String describing default classifier. * * @return the default classifier classname */ protected String defaultClassifierString() { return "weka.classifiers.rules.ZeroR"; } /** * Default constructor. */ public CostSensitiveClassifier() { m_Classifier = new weka.classifiers.rules.ZeroR(); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement(new Option( "\tMinimize expected misclassification cost. Default is to\n" +"\treweight training instances according to costs per class", "M", 0, "-M")); newVector.addElement(new Option( "\tFile name of a cost matrix to use. If this is not supplied,\n" +"\ta cost matrix will be loaded on demand. The name of the\n" +"\ton-demand file is the relation name of the training data\n" +"\tplus \".cost\", and the path to the on-demand file is\n" +"\tspecified with the -N option.", "C", 1, "-C ")); newVector.addElement(new Option( "\tName of a directory to search for cost files when loading\n" +"\tcosts on demand (default current directory).", "N", 1, "-N ")); newVector.addElement(new Option( "\tThe cost matrix in Matlab single line format.", "cost-matrix", 1, "-cost-matrix ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -M
   *  Minimize expected misclassification cost. Default is to
   *  reweight training instances according to costs per class
* *
 -C <cost file name>
   *  File name of a cost matrix to use. If this is not supplied,
   *  a cost matrix will be loaded on demand. The name of the
   *  on-demand file is the relation name of the training data
   *  plus ".cost", and the path to the on-demand file is
   *  specified with the -N option.
* *
 -N <directory>
   *  Name of a directory to search for cost files when loading
   *  costs on demand (default current directory).
* *
 -cost-matrix <matrix>
   *  The cost matrix in Matlab single line format.
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* *
 -W
   *  Full name of base classifier.
   *  (default: weka.classifiers.rules.ZeroR)
* *
 
   * Options specific to classifier weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * Options after -- are passed to the designated classifier.

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMinimizeExpectedCost(Utils.getFlag('M', options)); String costFile = Utils.getOption('C', options); if (costFile.length() != 0) { try { setCostMatrix(new CostMatrix(new BufferedReader( new FileReader(costFile)))); } catch (Exception ex) { // now flag as possible old format cost matrix. Delay cost matrix // loading until buildClassifer is called setCostMatrix(null); } setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, TAGS_MATRIX_SOURCE)); m_CostFile = costFile; } else { setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND, TAGS_MATRIX_SOURCE)); } String demandDir = Utils.getOption('N', options); if (demandDir.length() != 0) { setOnDemandDirectory(new File(demandDir)); } String cost_matrix = Utils.getOption("cost-matrix", options); if (cost_matrix.length() != 0) { StringWriter writer = new StringWriter(); CostMatrix.parseMatlab(cost_matrix).write(writer); setCostMatrix(new CostMatrix(new StringReader(writer.toString()))); setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED, TAGS_MATRIX_SOURCE)); } super.setOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 7]; int current = 0; if (m_MatrixSource == MATRIX_SUPPLIED) { if (m_CostFile != null) { options[current++] = "-C"; options[current++] = "" + m_CostFile; } else { options[current++] = "-cost-matrix"; options[current++] = getCostMatrix().toMatlab(); } } else { options[current++] = "-N"; options[current++] = "" + getOnDemandDirectory(); } if (getMinimizeExpectedCost()) { options[current++] = "-M"; } System.arraycopy(superOptions, 0, options, current, superOptions.length); while (current < options.length) { if (options[current] == null) { options[current] = ""; } current++; } return options; } /** * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "A metaclassifier that makes its base classifier cost-sensitive. " + "Two methods can be used to introduce cost-sensitivity: reweighting " + "training instances according to the total cost assigned to each " + "class; or predicting the class with minimum expected " + "misclassification cost (rather than the most likely class). " + "Performance can often be " + "improved by using a Bagged classifier to improve the probability " + "estimates of the base classifier."; } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String costMatrixSourceTipText() { return "Sets where to get the cost matrix. The two options are" + "to use the supplied explicit cost matrix (the setting of the " + "costMatrix property), or to load a cost matrix from a file when " + "required (this file will be loaded from the directory set by the " + "onDemandDirectory property and will be named relation_name" + CostMatrix.FILE_EXTENSION + ")."; } /** * Gets the source location method of the cost matrix. Will be one of * MATRIX_ON_DEMAND or MATRIX_SUPPLIED. * * @return the cost matrix source. */ public SelectedTag getCostMatrixSource() { return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE); } /** * Sets the source location of the cost matrix. Values other than * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored. * * @param newMethod the cost matrix location method. */ public void setCostMatrixSource(SelectedTag newMethod) { if (newMethod.getTags() == TAGS_MATRIX_SOURCE) { m_MatrixSource = newMethod.getSelectedTag().getID(); } } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String onDemandDirectoryTipText() { return "Sets the directory where cost files are loaded from. This option " + "is used when the costMatrixSource is set to \"On Demand\"."; } /** * Returns the directory that will be searched for cost files when * loading on demand. * * @return The cost file search directory. */ public File getOnDemandDirectory() { return m_OnDemandDirectory; } /** * Sets the directory that will be searched for cost files when * loading on demand. * * @param newDir The cost file search directory. */ public void setOnDemandDirectory(File newDir) { if (newDir.isDirectory()) { m_OnDemandDirectory = newDir; } else { m_OnDemandDirectory = new File(newDir.getParent()); } m_MatrixSource = MATRIX_ON_DEMAND; } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minimizeExpectedCostTipText() { return "Sets whether the minimum expected cost criteria will be used. If " + "this is false, the training data will be reweighted according to the " + "costs assigned to each class. If true, the minimum expected cost " + "criteria will be used."; } /** * Gets the value of MinimizeExpectedCost. * * @return Value of MinimizeExpectedCost. */ public boolean getMinimizeExpectedCost() { return m_MinimizeExpectedCost; } /** * Set the value of MinimizeExpectedCost. * * @param newMinimizeExpectedCost Value to assign to MinimizeExpectedCost. */ public void setMinimizeExpectedCost(boolean newMinimizeExpectedCost) { m_MinimizeExpectedCost = newMinimizeExpectedCost; } /** * Gets the classifier specification string, which contains the class name of * the classifier and any options to the classifier * * @return the classifier string. */ protected String getClassifierSpec() { Classifier c = getClassifier(); if (c instanceof OptionHandler) { return c.getClass().getName() + " " + Utils.joinOptions(((OptionHandler)c).getOptions()); } return c.getClass().getName(); } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String costMatrixTipText() { return "Sets the cost matrix explicitly. This matrix is used if the " + "costMatrixSource property is set to \"Supplied\"."; } /** * Gets the misclassification cost matrix. * * @return the cost matrix */ public CostMatrix getCostMatrix() { return m_CostMatrix; } /** * Sets the misclassification cost matrix. * * @param newCostMatrix the cost matrix */ public void setCostMatrix(CostMatrix newCostMatrix) { m_CostMatrix = newCostMatrix; m_MatrixSource = MATRIX_SUPPLIED; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.disableAllClassDependencies(); result.enable(Capability.NOMINAL_CLASS); return result; } /** * Builds the model of the base learner. * * @param data the training data * @throws Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); if (m_Classifier == null) { throw new Exception("No base classifier has been set!"); } if (m_MatrixSource == MATRIX_ON_DEMAND) { String costName = data.relationName() + CostMatrix.FILE_EXTENSION; File costFile = new File(getOnDemandDirectory(), costName); if (!costFile.exists()) { throw new Exception("On-demand cost file doesn't exist: " + costFile); } setCostMatrix(new CostMatrix(new BufferedReader( new FileReader(costFile)))); } else if (m_CostMatrix == null) { // try loading an old format cost file m_CostMatrix = new CostMatrix(data.numClasses()); m_CostMatrix.readOldFormat(new BufferedReader( new FileReader(m_CostFile))); } if (!m_MinimizeExpectedCost) { Random random = null; if (!(m_Classifier instanceof WeightedInstancesHandler)) { random = new Random(m_Seed); } data = m_CostMatrix.applyCostMatrix(data, random); } m_Classifier.buildClassifier(data); } /** * Returns class probabilities. When minimum expected cost approach is chosen, * returns probability one for class with the minimum expected misclassification * cost. Otherwise it returns the probability distribution returned by * the base classifier. * * @param instance the instance to be classified * @return the computed distribution for the given instance * @throws Exception if instance could not be classified * successfully */ public double[] distributionForInstance(Instance instance) throws Exception { if (!m_MinimizeExpectedCost) { return m_Classifier.distributionForInstance(instance); } double [] pred = m_Classifier.distributionForInstance(instance); double [] costs = m_CostMatrix.expectedCosts(pred, instance); /* for (int i = 0; i < pred.length; i++) { System.out.print(pred[i] + " "); } System.out.println(); for (int i = 0; i < costs.length; i++) { System.out.print(costs[i] + " "); } System.out.println("\n"); */ // This is probably not ideal int classIndex = Utils.minIndex(costs); for (int i = 0; i < pred.length; i++) { if (i == classIndex) { pred[i] = 1.0; } else { pred[i] = 0.0; } } return pred; } /** * Returns the type of graph this classifier * represents. * * @return the type of graph this classifier represents */ public int graphType() { if (m_Classifier instanceof Drawable) return ((Drawable)m_Classifier).graphType(); else return Drawable.NOT_DRAWABLE; } /** * Returns graph describing the classifier (if possible). * * @return the graph of the classifier in dotty format * @throws Exception if the classifier cannot be graphed */ public String graph() throws Exception { if (m_Classifier instanceof Drawable) return ((Drawable)m_Classifier).graph(); else throw new Exception("Classifier: " + getClassifierSpec() + " cannot be graphed"); } /** * Output a representation of this classifier * * @return a string representation of the classifier */ public String toString() { if (m_Classifier == null) { return "CostSensitiveClassifier: No model built yet."; } String result = "CostSensitiveClassifier using "; if (m_MinimizeExpectedCost) { result += "minimized expected misclasification cost\n"; } else { result += "reweighted training instances\n"; } result += "\n" + getClassifierSpec() + "\n\nClassifier Model\n" + m_Classifier.toString() + "\n\nCost Matrix\n" + m_CostMatrix.toString(); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.29 $"); } /** * Main method for testing this class. * * @param argv should contain the following arguments: * -t training file [-T test file] [-c class index] */ public static void main(String [] argv) { runClassifier(new CostSensitiveClassifier(), argv); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy