All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MIEMDD Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MIEMDD.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import weka.classifiers.RandomizableClassifier;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.unsupervised.attribute.Standardize;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.
* It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM. In this implementation, we use most-likely cause DD model and only use 3 random selected postive bags as initial starting points of EM.
*
* For more information see:
*
* Qi Zhang, Sally A. Goldman: EM-DD: An Improved Multiple-Instance Learning Technique. In: Advances in Neural Information Processing Systems 14, 1073-108, 2001. *

* * BibTeX: *

 * @inproceedings{Zhang2001,
 *    author = {Qi Zhang and Sally A. Goldman},
 *    booktitle = {Advances in Neural Information Processing Systems 14},
 *    pages = {1073-108},
 *    publisher = {MIT Press},
 *    title = {EM-DD: An Improved Multiple-Instance Learning Technique},
 *    year = {2001}
 * }
 * 
*

* * Valid options are:

* *

 -N <num>
 *  Whether to 0=normalize/1=standardize/2=neither.
 *  (default 1=standardize)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Eibe Frank ([email protected]) * @author Lin Dong ([email protected]) * @version $Revision: 9144 $ */ public class MIEMDD extends RandomizableClassifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 3899547154866223734L; /** The index of the class attribute */ protected int m_ClassIndex; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; /** MI data */ protected double[][] m_emData; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter = null; /** Whether to normalize/standardize/neither, default:standardize */ protected int m_filterType = FILTER_STANDARDIZE; /** Normalize training data */ public static final int FILTER_NORMALIZE = 0; /** Standardize training data */ public static final int FILTER_STANDARDIZE = 1; /** No normalization/standardization */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag[] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_Missing = new ReplaceMissingValues(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "EMDD model builds heavily upon Dietterich's Diverse Density (DD) " + "algorithm.\nIt is a general framework for MI learning of converting " + "the MI problem to a single-instance setting using EM. In this " + "implementation, we use most-likely cause DD model and only use 3 " + "random selected postive bags as initial starting points of EM.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Qi Zhang and Sally A. Goldman"); result.setValue(Field.TITLE, "EM-DD: An Improved Multiple-Instance Learning Technique"); result.setValue(Field.BOOKTITLE, "Advances in Neural Information Processing Systems 14"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "1073-108"); result.setValue(Field.PUBLISHER, "MIT Press"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tWhether to 0=normalize/1=standardize/2=neither.\n" + "\t(default 1=standardize)", "N", 1, "-N ")); Enumeration enm = super.listOptions(); while (enm.hasMoreElements()) result.addElement(enm.nextElement()); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -N <num>
   *  Whether to 0=normalize/1=standardize/2=neither.
   *  (default 1=standardize)
* *
 -S <num>
   *  Random number seed.
   *  (default 1)
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER)); } else { setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER)); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-N"); result.add("" + m_filterType); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String filterTypeTipText() { return "The filter type for transforming the training data."; } /** * Gets how the training data will be transformed. Will be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @return the filtering mode */ public SelectedTag getFilterType() { return new SelectedTag(m_filterType, TAGS_FILTER); } /** * Sets how the training data will be transformed. Should be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @param newType the new filtering mode */ public void setFilterType(SelectedTag newType) { if (newType.getTags() == TAGS_FILTER) { m_filterType = newType.getSelectedTag().getID(); } } private class OptEng extends Optimization { /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood for (int i=0; i0.01*pre_nll && iterationCount<10) { //stop condition while (nll < pre_nll && iterationCount < 10) { iterationCount++; pre_nll = nll; if (m_Debug) System.out.println("\niteration: "+iterationCount); //E-step (find one instance from each bag with max likelihood ) for (int i = 0; i < m_Data.length; i++) { //for each bag int insIndex = findInstance(i, x); for (int att = 0; att < m_Data[0].length; att++) //for each attribute m_emData[i][att] = m_Data[i][att][insIndex]; } if (m_Debug) System.out.println("E-step for new H' finished"); //M-step opt = new OptEng(); tmp = opt.findArgmin(x, b); while (tmp == null) { tmp = opt.getVarbValues(); if (m_Debug) System.out.println("200 iterations finished, not enough!"); tmp = opt.findArgmin(tmp, b); } nll = opt.getMinFunction(); pre_x = x; x = tmp; // update hypothesis //keep the track of the best target point which has the minimum nll /* if (nll < bestnll) { bestnll = nll; m_Par = tmp; if (m_Debug) System.out.println("!!!!!!!!!!!!!!!!Smaller NLL found: " + nll); }*/ //if (m_Debug) //System.out.println(exIdx+" "+p+": "+nll+" "+pre_nll+" " +bestnll); } //converged for one instance //evaluate the hypothesis on the training data and //keep the track of the hypothesis with minimum error on training data double distribution[] = new double[2]; int error = 0; if (nll > pre_nll) m_Par = pre_x; else m_Par = x; for (int i = 0; i= 0.5 && m_Classes[i] == 0) error++; else if (distribution[1]<0.5 && m_Classes[i] == 1) error++; } if (error < min_error) { best_hypothesis = m_Par; min_error = error; if (nll > pre_nll) bestnll = pre_nll; else bestnll = nll; if (m_Debug) System.out.println("error= "+ error +" nll= " + bestnll); } } if (m_Debug) { System.out.println(exIdx+ ": ---------------------------"); System.out.println("current minimum error= "+min_error+" nll= "+bestnll); } } m_Par = best_hypothesis; } /** * given x, find the instance in ith bag with the most likelihood * probability, which is most likely to responsible for the label of the * bag For a positive bag, find the instance with the maximal probability * of being positive For a negative bag, find the instance with the minimal * probability of being negative * * @param i the bag index * @param x the current values of variables * @return index of the instance in the bag */ protected int findInstance(int i, double[] x){ double min=Double.MAX_VALUE; int insIndex=0; int nI = m_Data[i][0].length; // numInstances in ith bag for (int j=0; j




© 2015 - 2025 Weber Informatics LLC | Privacy Policy