All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.rules.NNge Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    NNge.java
 *    Copyright (C) 2002 Brent Martin
 *
 */

package weka.classifiers.rules;

import weka.classifiers.Classifier;
import weka.classifiers.UpdateableClassifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Vector;


/**
 
 * Nearest-neighbor-like algorithm using non-nested generalized exemplars (which are hyperrectangles that can be viewed as if-then rules). For more information, see 
*
* Brent Martin (1995). Instance-Based learning: Nearest Neighbor With Generalization. Hamilton, New Zealand.
*
* Sylvain Roy (2002). Nearest Neighbor With Generalization. Christchurch, New Zealand. *

* * BibTeX: *

 * @mastersthesis{Martin1995,
 *    address = {Hamilton, New Zealand},
 *    author = {Brent Martin},
 *    school = {University of Waikato},
 *    title = {Instance-Based learning: Nearest Neighbor With Generalization},
 *    year = {1995}
 * }
 * 
 * @unpublished{Roy2002,
 *    address = {Christchurch, New Zealand},
 *    author = {Sylvain Roy},
 *    school = {University of Canterbury},
 *    title = {Nearest Neighbor With Generalization},
 *    year = {2002}
 * }
 * 
*

* * Valid options are:

* *

 -G <value>
 *  Number of attempts of generalisation.
 * 
* *
 -I <value>
 *  Number of folder for computing the mutual information.
 * 
* * * @author Brent Martin ([email protected]) * @author Sylvain Roy ([email protected]) * @version $Revision: 5529 $ */ public class NNge extends Classifier implements UpdateableClassifier, OptionHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 4084742275553788972L; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Nearest-neighbor-like algorithm using non-nested generalized exemplars " + "(which are hyperrectangles that can be viewed as if-then rules). For more " + "information, see \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.MASTERSTHESIS); result.setValue(Field.AUTHOR, "Brent Martin"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.TITLE, "Instance-Based learning: Nearest Neighbor With Generalization"); result.setValue(Field.SCHOOL, "University of Waikato"); result.setValue(Field.ADDRESS, "Hamilton, New Zealand"); additional = result.add(Type.UNPUBLISHED); additional.setValue(Field.AUTHOR, "Sylvain Roy"); additional.setValue(Field.YEAR, "2002"); additional.setValue(Field.TITLE, "Nearest Neighbor With Generalization"); additional.setValue(Field.SCHOOL, "University of Canterbury"); additional.setValue(Field.ADDRESS, "Christchurch, New Zealand"); return result; } /** * Implements Exemplar as used by NNge : parallel axis hyperrectangle. */ private class Exemplar extends Instances { /** for serialization */ static final long serialVersionUID = 3960180128928697216L; /** List of all the Exemplar */ private Exemplar previous = null; private Exemplar next = null; /** List of all the Exemplar with the same class */ private Exemplar previousWithClass = null; private Exemplar nextWithClass = null; /** The NNge which owns this Exemplar */ private NNge m_NNge; /** class of the Exemplar */ private double m_ClassValue; /** Number of correct prediction for this examplar */ private int m_PositiveCount = 1; /** Number of incorrect prediction for this examplar */ private int m_NegativeCount = 0; /** The max borders of the rectangle for numeric attributes */ private double[] m_MaxBorder; /** The min borders of the rectangle for numeric attributes */ private double[] m_MinBorder; /** The ranges of the hyperrectangle for nominal attributes */ private boolean[][] m_Range; /** the arrays used by preGeneralise */ private double[] m_PreMaxBorder = null; private double[] m_PreMinBorder = null; private boolean[][] m_PreRange = null; private Instance m_PreInst = null; /** * Build a new empty Exemplar * * @param nnge the classifier which owns this Exemplar * @param inst the instances from which the header information is to be taken * @param size the capacity of the Exemplar * @param classV the class of the Exemplar */ private Exemplar (NNge nnge, Instances inst, int size, double classV){ super(inst, size); m_NNge = nnge; m_ClassValue = classV; m_MinBorder = new double[numAttributes()]; m_MaxBorder = new double[numAttributes()]; m_Range = new boolean[numAttributes()][]; for(int i = 0; i < numAttributes(); i++){ if(attribute(i).isNumeric()){ m_MinBorder[i] = Double.POSITIVE_INFINITY; m_MaxBorder[i] = Double.NEGATIVE_INFINITY; m_Range[i] = null; } else { m_MinBorder[i] = Double.NaN; m_MaxBorder[i] = Double.NaN; m_Range[i] = new boolean[attribute(i).numValues() + 1]; for(int j = 0; j < attribute(i).numValues() + 1; j++){ m_Range[i][j] = false; } } } } /** * Generalise the Exemplar with inst * * @param inst the new example used for the generalisation * @throws Exception if either the class of inst is not equal to the class of the Exemplar or inst misses a value. */ private void generalise(Instance inst) throws Exception { if(m_ClassValue != inst.classValue()) throw new Exception("Exemplar.generalise : Incompatible instance's class."); add(inst); /* extends each range in order to cover inst */ for(int i = 0; i < numAttributes(); i++){ if(inst.isMissing(i)) throw new Exception("Exemplar.generalise : Generalisation with missing feature impossible."); if(i == classIndex()) continue; if(attribute(i).isNumeric()){ if(m_MaxBorder[i] < inst.value(i)) m_MaxBorder[i] = inst.value(i); if(inst.value(i) < m_MinBorder[i]) m_MinBorder[i] = inst.value(i); } else { m_Range[i][(int) inst.value(i)] = true; } } } /** * pre-generalise the Exemplar with inst * i.e. the boundaries of the Exemplar include inst but the Exemplar still doesn't 'own' inst. * To be complete, the generalisation must be validated with validateGeneralisation. * the generalisation can be canceled with cancelGeneralisation. * @param inst the new example used for the generalisation * @throws Exception if either the class of inst is not equal to the class of the Exemplar or inst misses a value. */ private void preGeneralise(Instance inst) throws Exception { if(m_ClassValue != inst.classValue()) throw new Exception("Exemplar.preGeneralise : Incompatible instance's class."); m_PreInst = inst; /* save the current state */ m_PreRange = new boolean[numAttributes()][]; m_PreMinBorder = new double[numAttributes()]; m_PreMaxBorder = new double[numAttributes()]; for(int i = 0; i < numAttributes(); i++){ if(attribute(i).isNumeric()){ m_PreMinBorder[i] = m_MinBorder[i]; m_PreMaxBorder[i] = m_MaxBorder[i]; } else { m_PreRange[i] = new boolean[attribute(i).numValues() + 1]; for(int j = 0; j < attribute(i).numValues() + 1; j++){ m_PreRange[i][j] = m_Range[i][j]; } } } /* perform the pre-generalisation */ for(int i = 0; i < numAttributes(); i++){ if(inst.isMissing(i)) throw new Exception("Exemplar.preGeneralise : Generalisation with missing feature impossible."); if(i == classIndex()) continue; if(attribute(i).isNumeric()){ if(m_MaxBorder[i] < inst.value(i)) m_MaxBorder[i] = inst.value(i); if(inst.value(i) < m_MinBorder[i]) m_MinBorder[i] = inst.value(i); } else { m_Range[i][(int) inst.value(i)] = true; } } } /** * Validates a generalisation started with preGeneralise. * Watch out, preGeneralise must have been called before. * * @throws Exception is thrown if preGeneralise hasn't been called before */ private void validateGeneralisation() throws Exception { if(m_PreInst == null){ throw new Exception("Exemplar.validateGeneralisation : validateGeneralisation called without previous call to preGeneralise!"); } add(m_PreInst); m_PreRange = null; m_PreMinBorder = null; m_PreMaxBorder = null; } /** * Cancels a generalisation started with preGeneralise. * Watch out, preGeneralise must have been called before. * * @throws Exception is thrown if preGeneralise hasn't been called before */ private void cancelGeneralisation() throws Exception { if(m_PreInst == null){ throw new Exception("Exemplar.cancelGeneralisation : cancelGeneralisation called without previous call to preGeneralise!"); } m_PreInst = null; m_Range = m_PreRange; m_MinBorder = m_PreMinBorder; m_MaxBorder = m_PreMaxBorder; m_PreRange = null; m_PreMinBorder = null; m_PreMaxBorder = null; } /** * return true if inst is held by this Exemplar, false otherwise * * @param inst an Instance * @return true if inst is held by this hyperrectangle, false otherwise */ private boolean holds(Instance inst) { if(numInstances() == 0) return false; for(int i = 0; i < numAttributes(); i++){ if(i != classIndex() && !holds(i, inst.value(i))) return false; } return true; } /** * return true if value is inside the Exemplar along the attrIndex attribute. * * @param attrIndex the index of an attribute * @param value a value along the attrIndexth attribute * @return true if value is inside the Exemplar along the attrIndex attribute. */ private boolean holds(int attrIndex, double value) { if (numAttributes() == 0) return false; if(attribute(attrIndex).isNumeric()) return(m_MinBorder[attrIndex] <= value && value <= m_MaxBorder[attrIndex]); else return m_Range[attrIndex][(int) value]; } /** * Check if the Examplar overlaps ex * * @param ex an Exemplar * @return true if ex is overlapped by the Exemplar * @throws Exception */ private boolean overlaps(Exemplar ex) { if(ex.isEmpty() || isEmpty()) return false; for (int i = 0; i < numAttributes(); i++){ if(i == classIndex()){ continue; } if (attribute(i).isNumeric() && (ex.m_MaxBorder[i] < m_MinBorder[i] || ex.m_MinBorder[i] > m_MaxBorder[i])){ return false; } if (attribute(i).isNominal()) { boolean in = false; for (int j = 0; j < attribute(i).numValues() + 1; j++){ if(m_Range[i][j] && ex.m_Range[i][j]){ in = true; break; } } if(!in) return false; } } return true; } /** * Compute the distance between the projection of inst and this Exemplar along the attribute attrIndex. * If inst misses its value along the attribute, the function returns 0. * * @param inst an instance * @param attrIndex the index of the attribute * @return the distance between the projection of inst and this Exemplar along the attribute attrIndex. */ private double attrDistance(Instance inst, int attrIndex) { if(inst.isMissing(attrIndex)) return 0; /* numeric attribute */ if(attribute(attrIndex).isNumeric()){ double norm = m_NNge.m_MaxArray[attrIndex] - m_NNge.m_MinArray[attrIndex]; if(norm <= 0) norm = 1; if (m_MaxBorder[attrIndex] < inst.value(attrIndex)) { return (inst.value(attrIndex) - m_MaxBorder[attrIndex]) / norm; } else if (inst.value(attrIndex) < m_MinBorder[attrIndex]) { return (m_MinBorder[attrIndex] - inst.value(attrIndex)) / norm; } else { return 0; } /* nominal attribute */ } else { if(holds(attrIndex, inst.value(attrIndex))){ return 0; } else { return 1; } } } /** * Returns the square of the distance between inst and the Exemplar. * * @param inst an instance * @return the squared distance between inst and the Exemplar. */ private double squaredDistance(Instance inst) { double sum = 0, term; int numNotMissingAttr = 0; for(int i = 0; i < inst.numAttributes(); i++){ if(i == classIndex()) continue; term = m_NNge.attrWeight(i) * attrDistance(inst, i); term = term * term; sum += term; if (!inst.isMissing(i)) numNotMissingAttr++; } if(numNotMissingAttr == 0){ return 0; } else { return sum / (double) (numNotMissingAttr * numNotMissingAttr); } } /** * Return the weight of the Examplar * * @return the weight of the Examplar. */ private double weight(){ return ((double) (m_PositiveCount + m_NegativeCount)) / ((double) m_PositiveCount); } /** * Return the class of the Exemplar * * @return the class of this exemplar as a double (weka format) */ private double classValue(){ return m_ClassValue; } /** * Returns the value of the inf border of the Exemplar. * * @param attrIndex the index of the attribute * @return the value of the inf border for this attribute * @throws Exception is thrown either if the attribute is nominal or if the Exemplar is empty */ private double getMinBorder(int attrIndex) throws Exception { if(!attribute(attrIndex).isNumeric()) throw new Exception("Exception.getMinBorder : not numeric attribute !"); if(numInstances() == 0) throw new Exception("Exception.getMinBorder : empty Exemplar !"); return m_MinBorder[attrIndex]; } /** * Returns the value of the sup border of the hyperrectangle * Returns NaN if the HyperRectangle doesn't have any border for this attribute * * @param attrIndex the index of the attribute * @return the value of the sup border for this attribute * @throws Exception is thrown either if the attribute is nominal or if the Exemplar is empty */ private double getMaxBorder(int attrIndex) throws Exception { if(!attribute(attrIndex).isNumeric()) throw new Exception("Exception.getMaxBorder : not numeric attribute !"); if(numInstances() == 0) throw new Exception("Exception.getMaxBorder : empty Exemplar !"); return m_MaxBorder[attrIndex]; } /** * Returns the number of positive classifications * * @return the number of positive classifications */ private int getPositiveCount(){ return m_PositiveCount; } /** * Returns the number of negative classifications * * @return the number of negative classifications */ private int getNegativeCount(){ return m_NegativeCount; } /** * Set the number of positive classifications * * @param value an integer value (greater than 0 is wise...) */ private void setPositiveCount(int value) { m_PositiveCount = value; } /** * Set the number of negative classifications * * @param value an integer value */ private void setNegativeCount(int value) { m_NegativeCount = value; } /** * Increment the number of positive Classifications */ private void incrPositiveCount(){ m_PositiveCount++; } /** * Increment the number of negative Classifications */ private void incrNegativeCount(){ m_NegativeCount++; } /** * Returns true if the Exemplar is empty (i.e. doesn't yield any Instance) * * @return true if the Exemplar is empty, false otherwise */ private boolean isEmpty(){ return (numInstances() == 0); } /** * Returns a description of this Exemplar * * @return A string that describes this Exemplar */ private String toString2(){ String s; Enumeration enu = null; s = "Exemplar["; if (numInstances() == 0) { return s + "Empty]"; } s += "{"; enu = enumerateInstances(); while(enu.hasMoreElements()){ s = s + "<" + enu.nextElement().toString() + "> "; } s = s.substring(0, s.length()-1); s = s + "} {" + toRules() + "} p=" + m_PositiveCount + " n=" + m_NegativeCount + "]"; return s; } /** * Returns a string of the rules induced by this examplar * * @return a string of the rules induced by this examplar */ private String toRules(){ if (numInstances() == 0) return "No Rules (Empty Exemplar)"; String s = "", sep = ""; for(int i = 0; i < numAttributes(); i++){ if(i == classIndex()) continue; if(attribute(i).isNumeric()){ if(m_MaxBorder[i] != m_MinBorder[i]){ s += sep + m_MinBorder[i] + "<=" + attribute(i).name() + "<=" + m_MaxBorder[i]; } else { s += sep + attribute(i).name() + "=" + m_MaxBorder[i]; } sep = " ^ "; } else { s += sep + attribute(i).name() + " in {"; String virg = ""; for(int j = 0; j < attribute(i).numValues() + 1; j++){ if(m_Range[i][j]){ s+= virg; if(j == attribute(i).numValues()) s += "?"; else s += attribute(i).value(j); virg = ","; } } s+="}"; sep = " ^ "; } } s += " ("+numInstances() +")"; return s; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5529 $"); } } /** An empty instances to keep the headers, the classIndex, etc... */ private Instances m_Train; /** The list of Exemplars */ private Exemplar m_Exemplars; /** The lists of Exemplars by class */ private Exemplar m_ExemplarsByClass[]; /** The minimum values for numeric attributes. */ double [] m_MinArray; /** The maximum values for numeric attributes. */ double [] m_MaxArray; /** The number of try for generalisation */ private int m_NumAttemptsOfGene = 5; /** The number of folder for the Mutual Information */ private int m_NumFoldersMI = 5; /** Values to use for missing value */ private double [] m_MissingVector; /** MUTUAL INFORMATION'S DATAS */ /* numeric attributes */ private int [][][] m_MI_NumAttrClassInter; private int [][] m_MI_NumAttrInter; private double [] m_MI_MaxArray; private double [] m_MI_MinArray; /* nominal attributes */ private int [][][] m_MI_NumAttrClassValue; private int [][] m_MI_NumAttrValue; /* both */ private int [] m_MI_NumClass; private int m_MI_NumInst; private double [] m_MI; /** MAIN FUNCTIONS OF THE CLASSIFIER */ /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates a classifier. Must initialize all fields of the classifier * that are not being set via options (ie. multiple calls of buildClassifier * must always lead to the same result). Must not change the dataset * in any way. * * @param data set of instances serving as training data * @throws Exception if the classifier has not been * generated successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); /* initialize the classifier */ m_Train = new Instances(data, 0); m_Exemplars = null; m_ExemplarsByClass = new Exemplar[m_Train.numClasses()]; for(int i = 0; i < m_Train.numClasses(); i++){ m_ExemplarsByClass[i] = null; } m_MaxArray = new double[m_Train.numAttributes()]; m_MinArray = new double[m_Train.numAttributes()]; for(int i = 0; i < m_Train.numAttributes(); i++){ m_MinArray[i] = Double.POSITIVE_INFINITY; m_MaxArray[i] = Double.NEGATIVE_INFINITY; } m_MI_MinArray = new double [data.numAttributes()]; m_MI_MaxArray = new double [data.numAttributes()]; m_MI_NumAttrClassInter = new int[data.numAttributes()][][]; m_MI_NumAttrInter = new int[data.numAttributes()][]; m_MI_NumAttrClassValue = new int[data.numAttributes()][][]; m_MI_NumAttrValue = new int[data.numAttributes()][]; m_MI_NumClass = new int[data.numClasses()]; m_MI = new double[data.numAttributes()]; m_MI_NumInst = 0; for(int cclass = 0; cclass < data.numClasses(); cclass++) m_MI_NumClass[cclass] = 0; for (int attrIndex = 0; attrIndex < data.numAttributes(); attrIndex++) { if(attrIndex == data.classIndex()) continue; m_MI_MaxArray[attrIndex] = m_MI_MinArray[attrIndex] = Double.NaN; m_MI[attrIndex] = Double.NaN; if(data.attribute(attrIndex).isNumeric()){ m_MI_NumAttrInter[attrIndex] = new int[m_NumFoldersMI]; for(int inter = 0; inter < m_NumFoldersMI; inter++){ m_MI_NumAttrInter[attrIndex][inter] = 0; } } else { m_MI_NumAttrValue[attrIndex] = new int[data.attribute(attrIndex).numValues() + 1]; for(int attrValue = 0; attrValue < data.attribute(attrIndex).numValues() + 1; attrValue++){ m_MI_NumAttrValue[attrIndex][attrValue] = 0; } } m_MI_NumAttrClassInter[attrIndex] = new int[data.numClasses()][]; m_MI_NumAttrClassValue[attrIndex] = new int[data.numClasses()][]; for(int cclass = 0; cclass < data.numClasses(); cclass++){ if(data.attribute(attrIndex).isNumeric()){ m_MI_NumAttrClassInter[attrIndex][cclass] = new int[m_NumFoldersMI]; for(int inter = 0; inter < m_NumFoldersMI; inter++){ m_MI_NumAttrClassInter[attrIndex][cclass][inter] = 0; } } else if(data.attribute(attrIndex).isNominal()){ m_MI_NumAttrClassValue[attrIndex][cclass] = new int[data.attribute(attrIndex).numValues() + 1]; for(int attrValue = 0; attrValue < data.attribute(attrIndex).numValues() + 1; attrValue++){ m_MI_NumAttrClassValue[attrIndex][cclass][attrValue] = 0; } } } } m_MissingVector = new double[data.numAttributes()]; for(int i = 0; i < data.numAttributes(); i++){ if(i == data.classIndex()){ m_MissingVector[i] = Double.NaN; } else { m_MissingVector[i] = data.attribute(i).numValues(); } } /* update the classifier with data */ Enumeration enu = data.enumerateInstances(); while(enu.hasMoreElements()){ update((Instance) enu.nextElement()); } } /** * Classifies a given instance. * * @param instance the instance to be classified * @return index of the predicted class as a double * @throws Exception if instance could not be classified * successfully */ public double classifyInstance(Instance instance) throws Exception { /* check the instance */ if (m_Train.equalHeaders(instance.dataset()) == false){ throw new Exception("NNge.classifyInstance : Incompatible instance types !"); } Exemplar matched = nearestExemplar(instance); if(matched == null){ throw new Exception("NNge.classifyInstance : NNge hasn't been trained !"); } return matched.classValue(); } /** * Updates the classifier using the given instance. * * @param instance the instance to include * @throws Exception if instance could not be incorporated * successfully */ public void updateClassifier(Instance instance) throws Exception { if (m_Train.equalHeaders(instance.dataset()) == false) { throw new Exception("Incompatible instance types"); } update(instance); } /** HIGH LEVEL SUB-FUNCTIONS */ /** * Performs the update of the classifier * * @param instance the new instance * @throws Exception if the update fails */ private void update(Instance instance) throws Exception { if (instance.classIsMissing()) { return; } instance.replaceMissingValues(m_MissingVector); m_Train.add(instance); /* Update the minimum and maximum for all the attributes */ updateMinMax(instance); /* update the mutual information datas */ updateMI(instance); /* Nearest Exemplar */ Exemplar nearest = nearestExemplar(instance); /* Adjust */ if(nearest == null){ Exemplar newEx = new Exemplar(this, m_Train, 10, instance.classValue()); newEx.generalise(instance); initWeight(newEx); addExemplar(newEx); return; } adjust(instance, nearest); /* Generalise */ generalise(instance); } /** * Returns the nearest Exemplar * * @param inst an Instance * @return the nearest Exemplar to inst, null if no exemplar are found. */ private Exemplar nearestExemplar(Instance inst){ if (m_Exemplars == null) return null; Exemplar cur = m_Exemplars, nearest = m_Exemplars; double dist, smallestDist = cur.squaredDistance(inst); while (cur.next != null){ cur = cur.next; dist = cur.squaredDistance(inst); if (dist < smallestDist){ smallestDist = dist; nearest = cur; } } return nearest; } /** * Returns the nearest Exemplar with class c * * @param inst an Instance * @param c the class of the Exemplar to return * @return the nearest Exemplar to inst with class c, null if no exemplar with class c are found. */ private Exemplar nearestExemplar(Instance inst, double c){ if (m_ExemplarsByClass[(int) c] == null) return null; Exemplar cur = m_ExemplarsByClass[(int) c], nearest = m_ExemplarsByClass[(int) c]; double dist, smallestDist = cur.squaredDistance(inst); while (cur.nextWithClass != null){ cur = cur.nextWithClass; dist = cur.squaredDistance(inst); if (dist < smallestDist){ smallestDist = dist; nearest = cur; } } return nearest; } /** * Generalise an Exemplar (not necessarily predictedExemplar) to match instance. * predictedExemplar must be in NNge's lists * * @param newInst the new instance * @throws Exception in case of inconsitent situation */ private void generalise(Instance newInst) throws Exception { Exemplar first = m_ExemplarsByClass[(int) newInst.classValue()]; int n = 0; /* try to generalise with the n first exemplars */ while(n < m_NumAttemptsOfGene && first != null){ /* find the nearest one starting from first */ Exemplar closest = first, cur = first; double smallestDist = first.squaredDistance(newInst), dist; while(cur.nextWithClass != null){ cur = cur.nextWithClass; dist = cur.squaredDistance(newInst); if(dist < smallestDist){ smallestDist = dist; closest = cur; } } /* remove the Examplar from NNge's lists */ if(closest == first) first = first.nextWithClass; removeExemplar(closest); /* try to generalise */ closest.preGeneralise(newInst); if(!detectOverlapping(closest)){ closest.validateGeneralisation(); addExemplar(closest); return; } /* it didn't work, put ungeneralised exemplar on the top of the lists */ closest.cancelGeneralisation(); addExemplar(closest); n++; } /* generalisation failled : add newInst as a new Examplar */ Exemplar newEx = new Exemplar(this, m_Train, 5, newInst.classValue()); newEx.generalise(newInst); initWeight(newEx); addExemplar(newEx); } /** * Adjust the NNge. * * @param newInst the instance to classify * @param predictedExemplar the Exemplar that matches newInst * @throws Exception in case of inconsistent situation */ private void adjust(Instance newInst, Exemplar predictedExemplar) throws Exception { /* correct prediction */ if(newInst.classValue() == predictedExemplar.classValue()){ predictedExemplar.incrPositiveCount(); /* incorrect prediction */ } else { predictedExemplar.incrNegativeCount(); /* new instance falls inside */ if(predictedExemplar.holds(newInst)){ prune(predictedExemplar, newInst); } } } /** * Prunes an Exemplar that matches an Instance * * @param predictedExemplar an Exemplar * @param newInst an Instance matched by predictedExemplar * @throws Exception in case of inconsistent situation. (shouldn't happen.) */ private void prune(Exemplar predictedExemplar, Instance newInst) throws Exception { /* remove the Exemplar */ removeExemplar(predictedExemplar); /* look for the best nominal feature and the best numeric feature to cut */ int numAttr = -1, nomAttr = -1; double smallestDelta = Double.POSITIVE_INFINITY, delta; int biggest_N_Nom = -1, biggest_N_Num = -1, n, m; for(int i = 0; i < m_Train.numAttributes(); i++){ if(i == m_Train.classIndex()) continue; /* numeric attribute */ if(m_Train.attribute(i).isNumeric()){ /* compute the distance 'delta' to the closest boundary */ double norm = m_MaxArray[i] - m_MinArray[i]; if(norm != 0){ delta = Math.min((predictedExemplar.getMaxBorder(i) - newInst.value(i)), (newInst.value(i) - predictedExemplar.getMinBorder(i))) / norm; } else { delta = Double.POSITIVE_INFINITY; } /* compute the size of the biggest Exemplar which would be created */ n = m = 0; Enumeration enu = predictedExemplar.enumerateInstances(); while(enu.hasMoreElements()){ Instance ins = (Instance) enu.nextElement(); if(ins.value(i) < newInst.value(i)) n++; else if(ins.value(i) > newInst.value(i)) m++; } n = Math.max(n, m); if(delta < smallestDelta){ smallestDelta = delta; biggest_N_Num = n; numAttr = i; } else if(delta == smallestDelta && n > biggest_N_Num){ biggest_N_Num = n; numAttr = i; } /* nominal attribute */ } else { /* compute the size of the Exemplar which would be created */ Enumeration enu = predictedExemplar.enumerateInstances(); n = 0; while(enu.hasMoreElements()){ if(((Instance) enu.nextElement()).value(i) != newInst.value(i)) n++; } if(n > biggest_N_Nom){ biggest_N_Nom = n; nomAttr = i; } } } /* selection of the feature to cut between the best nominal and the best numeric */ int attrToCut; if(numAttr == -1 && nomAttr == -1){ attrToCut = 0; } else if (numAttr == -1){ attrToCut = nomAttr; } else if(nomAttr == -1){ attrToCut = numAttr; } else { if(biggest_N_Nom > biggest_N_Num) attrToCut = nomAttr; else attrToCut = numAttr; } /* split the Exemplar */ Instance curInst; Exemplar a, b; a = new Exemplar(this, m_Train, 10, predictedExemplar.classValue()); b = new Exemplar(this, m_Train, 10, predictedExemplar.classValue()); LinkedList leftAlone = new LinkedList(); Enumeration enu = predictedExemplar.enumerateInstances(); if(m_Train.attribute(attrToCut).isNumeric()){ while(enu.hasMoreElements()){ curInst = (Instance) enu.nextElement(); if(curInst.value(attrToCut) > newInst.value(attrToCut)){ a.generalise(curInst); } else if (curInst.value(attrToCut) < newInst.value(attrToCut)){ b.generalise(curInst); } else if (notEqualFeatures(curInst, newInst)) { leftAlone.add(curInst); } } } else { while(enu.hasMoreElements()){ curInst = (Instance) enu.nextElement(); if(curInst.value(attrToCut) != newInst.value(attrToCut)){ a.generalise(curInst); } else if (notEqualFeatures(curInst, newInst)){ leftAlone.add(curInst); } } } /* treat the left alone Instances */ while(leftAlone.size() != 0){ Instance alone = (Instance) leftAlone.removeFirst(); a.preGeneralise(alone); if(!a.holds(newInst)){ a.validateGeneralisation(); continue; } a.cancelGeneralisation(); b.preGeneralise(alone); if(!b.holds(newInst)){ b.validateGeneralisation(); continue; } b.cancelGeneralisation(); Exemplar exem = new Exemplar(this, m_Train, 3, alone.classValue()); exem.generalise(alone); initWeight(exem); addExemplar(exem); } /* add (or not) the new Exemplars */ if(a.numInstances() != 0){ initWeight(a); addExemplar(a); } if(b.numInstances() != 0){ initWeight(b); addExemplar(b); } } /** * Returns true if the instance don't have the same feature values * * @param inst1 an instance * @param inst2 an instance * @return true if the instance don't have the same feature values */ private boolean notEqualFeatures(Instance inst1, Instance inst2) { for(int i = 0; i < m_Train.numAttributes(); i++){ if(i == m_Train.classIndex()) continue; if(inst1.value(i) != inst2.value(i)) return true; } return false; } /** * Returns true if ex overlaps any of the Exemplars in NNge's lists * * @param ex an Exemplars * @return true if ex overlaps any of the Exemplars in NNge's lists */ private boolean detectOverlapping(Exemplar ex){ Exemplar cur = m_Exemplars; while(cur != null){ if(ex.overlaps(cur)){ return true; } cur = cur.next; } return false; } /** * Updates the minimum, maximum, sum, sumSquare values for all the attributes * * @param instance the new instance */ private void updateMinMax(Instance instance){ for (int j = 0; j < m_Train.numAttributes(); j++) { if(m_Train.classIndex() == j || m_Train.attribute(j).isNominal()) continue; if (instance.value(j) < m_MinArray[j]) m_MinArray[j] = instance.value(j); if (instance.value(j) > m_MaxArray[j]) m_MaxArray[j] = instance.value(j); } } /** * Updates the data for computing the mutual information * * MUST be called AFTER adding inst in m_Train * * @param inst the new instance * @throws Exception is thrown if an inconsistent situation is met */ private void updateMI(Instance inst) throws Exception { if(m_NumFoldersMI < 1){ throw new Exception("NNge.updateMI : incorrect number of folders ! Option I must be greater than 1."); } m_MI_NumClass[(int) inst.classValue()]++; m_MI_NumInst++; /* for each attribute */ for(int attrIndex = 0; attrIndex < m_Train.numAttributes(); attrIndex++){ /* which is the class attribute */ if(m_Train.classIndex() == attrIndex) continue; /* which is a numeric attribute */ else if(m_Train.attribute(attrIndex).isNumeric()){ /* if max-min have to be updated */ if(Double.isNaN(m_MI_MaxArray[attrIndex]) || Double.isNaN(m_MI_MinArray[attrIndex]) || m_MI_MaxArray[attrIndex] < inst.value(attrIndex) || inst.value(attrIndex) < m_MI_MinArray[attrIndex]){ /* then update them */ if(Double.isNaN(m_MI_MaxArray[attrIndex])) m_MI_MaxArray[attrIndex] = inst.value(attrIndex); if(Double.isNaN(m_MI_MinArray[attrIndex])) m_MI_MinArray[attrIndex] = inst.value(attrIndex); if(m_MI_MaxArray[attrIndex] < inst.value(attrIndex)) m_MI_MaxArray[attrIndex] = inst.value(attrIndex); if(m_MI_MinArray[attrIndex] > inst.value(attrIndex)) m_MI_MinArray[attrIndex] = inst.value(attrIndex); /* and re-compute everything from scratch... (just for this attribute) */ double delta = (m_MI_MaxArray[attrIndex] - m_MI_MinArray[attrIndex]) / (double) m_NumFoldersMI; /* for each interval */ for(int inter = 0; inter < m_NumFoldersMI; inter++){ m_MI_NumAttrInter[attrIndex][inter] = 0; /* for each class */ for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ m_MI_NumAttrClassInter[attrIndex][cclass][inter] = 0; /* count */ Enumeration enu = m_Train.enumerateInstances(); while(enu.hasMoreElements()){ Instance cur = (Instance) enu.nextElement(); if(( (m_MI_MinArray[attrIndex] + inter * delta) <= cur.value(attrIndex) ) && ( cur.value(attrIndex) <= (m_MI_MinArray[attrIndex] + (inter + 1) * delta) ) && ( cur.classValue() == cclass ) ){ m_MI_NumAttrInter[attrIndex][inter]++; m_MI_NumAttrClassInter[attrIndex][cclass][inter]++; } } } } /* max-min don't have to be updated */ } else { /* still have to incr the card of the correct interval */ double delta = (m_MI_MaxArray[attrIndex] - m_MI_MinArray[attrIndex]) / (double) m_NumFoldersMI; /* for each interval */ for(int inter = 0; inter < m_NumFoldersMI; inter++){ /* which contains inst*/ if(( (m_MI_MinArray[attrIndex] + inter * delta) <= inst.value(attrIndex) ) && ( inst.value(attrIndex) <= (m_MI_MinArray[attrIndex] + (inter + 1) * delta) )){ m_MI_NumAttrInter[attrIndex][inter]++; m_MI_NumAttrClassInter[attrIndex][(int) inst.classValue()][inter]++; } } } /* update the mutual information of this attribute... */ m_MI[attrIndex] = 0; /* for each interval, for each class */ for(int inter = 0; inter < m_NumFoldersMI; inter++){ for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ double pXY = ((double) m_MI_NumAttrClassInter[attrIndex][cclass][inter]) / ((double) m_MI_NumInst); double pX = ((double) m_MI_NumClass[cclass]) / ((double) m_MI_NumInst); double pY = ((double) m_MI_NumAttrInter[attrIndex][inter]) / ((double) m_MI_NumInst); if(pXY != 0) m_MI[attrIndex] += pXY * Utils.log2(pXY / (pX * pY)); } } /* which is a nominal attribute */ } else if (m_Train.attribute(attrIndex).isNominal()){ /*incr the card of the correct 'values' */ m_MI_NumAttrValue[attrIndex][(int) inst.value(attrIndex)]++; m_MI_NumAttrClassValue[attrIndex][(int) inst.classValue()][(int) inst.value(attrIndex)]++; /* update the mutual information of this attribute... */ m_MI[attrIndex] = 0; /* for each nominal value, for each class */ for(int attrValue = 0; attrValue < m_Train.attribute(attrIndex).numValues() + 1; attrValue++){ for(int cclass = 0; cclass < m_Train.numClasses(); cclass++){ double pXY = ((double) m_MI_NumAttrClassValue[attrIndex][cclass][attrValue]) / ((double) m_MI_NumInst); double pX = ((double) m_MI_NumClass[cclass]) / ((double) m_MI_NumInst); double pY = ((double) m_MI_NumAttrValue[attrIndex][attrValue]) / ((double) m_MI_NumInst); if(pXY != 0) m_MI[attrIndex] += pXY * Utils.log2(pXY / (pX * pY)); } } /* not a nominal attribute, not a numeric attribute */ } else { throw new Exception("NNge.updateMI : Cannot deal with 'string attribute'."); } } } /** * Init the weight of ex * Watch out ! ex shouldn't be in NNge's lists when initialized * * @param ex the Exemplar to initialise */ private void initWeight(Exemplar ex) { int pos = 0, neg = 0, n = 0; Exemplar cur = m_Exemplars; if (cur == null){ ex.setPositiveCount(1); ex.setNegativeCount(0); return; } while(cur != null){ pos += cur.getPositiveCount(); neg += cur.getNegativeCount(); n++; cur = cur.next; } ex.setPositiveCount(pos / n); ex.setNegativeCount(neg / n); } /** * Adds an Exemplar in NNge's lists * Ensure that the exemplar is not already in a list : the links would be broken... * * @param ex a new Exemplar to add */ private void addExemplar(Exemplar ex) { /* add ex at the top of the general list */ ex.next = m_Exemplars; if(m_Exemplars != null) m_Exemplars.previous = ex; ex.previous = null; m_Exemplars = ex; /* add ex at the top of the corresponding class list */ ex.nextWithClass = m_ExemplarsByClass[(int) ex.classValue()]; if(m_ExemplarsByClass[(int) ex.classValue()] != null) m_ExemplarsByClass[(int) ex.classValue()].previousWithClass = ex; ex.previousWithClass = null; m_ExemplarsByClass[(int) ex.classValue()] = ex; } /** * Removes an Exemplar from NNge's lists * Ensure that the Exemplar is actually in NNge's lists. * Likely to do something wrong if this condition is not respected. * Due to the list implementation, the Exemplar can appear only once in the lists : * once removed, the exemplar is not in the lists anymore. * * @param ex a new Exemplar to add */ private void removeExemplar(Exemplar ex){ /* remove from the general list */ if(m_Exemplars == ex){ m_Exemplars = ex.next; if(m_Exemplars != null) m_Exemplars.previous = null; } else { ex.previous.next = ex.next; if(ex.next != null){ ex.next.previous = ex.previous; } } ex.next = ex.previous = null; /* remove from the class list */ if(m_ExemplarsByClass[(int) ex.classValue()] == ex){ m_ExemplarsByClass[(int) ex.classValue()] = ex.nextWithClass; if(m_ExemplarsByClass[(int) ex.classValue()] != null) m_ExemplarsByClass[(int) ex.classValue()].previousWithClass = null; } else { ex.previousWithClass.nextWithClass = ex.nextWithClass; if(ex.nextWithClass != null){ ex.nextWithClass.previousWithClass = ex.previousWithClass; } } ex.nextWithClass = ex.previousWithClass = null; } /** * returns the weight of indexth attribute * * @param index attribute's index * @return the weight of indexth attribute */ private double attrWeight (int index) { return m_MI[index]; } /** * Returns a description of this classifier. * * @return a description of this classifier as a string. */ public String toString(){ String s; Exemplar cur = m_Exemplars; int i; if (m_MinArray == null) { return "No classifier built"; } int[] nbHypClass = new int[m_Train.numClasses()]; int[] nbSingleClass = new int[m_Train.numClasses()]; for(i = 0; i")); newVector.addElement(new Option( "\tNumber of folder for computing the mutual information.\n", "I", 1, "-I ")); return newVector.elements(); } /** * Sets the OptionHandler's options using the given list. All options * will be set (or reset) during this call (i.e. incremental setting * of options is not possible).

* * Valid options are:

* *

 -G <value>
   *  Number of attempts of generalisation.
   * 
* *
 -I <value>
   *  Number of folder for computing the mutual information.
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String str; /* Number max of attempts of generalisation */ str = Utils.getOption('G', options); if(str.length() != 0){ m_NumAttemptsOfGene = Integer.parseInt(str); if(m_NumAttemptsOfGene < 1) throw new Exception("NNge.setOptions : G option's value must be greater than 1."); } else { m_NumAttemptsOfGene = 5; } /* Number of folder for computing the mutual information */ str = Utils.getOption('I', options); if(str.length() != 0){ m_NumFoldersMI = Integer.parseInt(str); if(m_NumFoldersMI < 1) throw new Exception("NNge.setOptions : I option's value must be greater than 1."); } else { m_NumFoldersMI = 5; } } /** * Gets the current option settings for the OptionHandler. * * @return the list of current option settings as an array of strings */ public String[] getOptions(){ String[] options = new String[5]; int current = 0; options[current++] = "-G"; options[current++] = "" + m_NumAttemptsOfGene; options[current++] = "-I"; options[current++] = "" + m_NumFoldersMI; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numAttemptsOfGeneOptionTipText() { return "Sets the number of attempts for generalization."; } /** * Gets the number of attempts for generalisation. * * @return the value of the option G */ public int getNumAttemptsOfGeneOption() { return m_NumAttemptsOfGene; } /** * Sets the number of attempts for generalisation. * * @param newIntParameter the new value. */ public void setNumAttemptsOfGeneOption(int newIntParameter) { m_NumAttemptsOfGene = newIntParameter; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldersMIOptionTipText() { return "Sets the number of folder for mutual information."; } /** * Gets the number of folder for mutual information. * * @return the value of the option I */ public int getNumFoldersMIOption() { return m_NumFoldersMI; } /** * Sets the number of folder for mutual information. * * @param newIntParameter the new value. */ public void setNumFoldersMIOption(int newIntParameter) { m_NumFoldersMI = newIntParameter; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5529 $"); } /** * Main method for testing this class. * * @param argv should contain command line arguments for evaluation * (see Evaluation). */ public static void main(String [] argv) { runClassifier(new NNge(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy