weka.classifiers.rules.PART Maven / Gradle / Ivy
Show all versions of weka-stable Show documentation
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* PART.java
* Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.rules;
import weka.classifiers.Classifier;
import weka.classifiers.rules.part.MakeDecList;
import weka.classifiers.trees.j48.BinC45ModelSelection;
import weka.classifiers.trees.j48.C45ModelSelection;
import weka.classifiers.trees.j48.ModelSelection;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Enumeration;
import java.util.Vector;
/**
* Class for generating a PART decision list. Uses separate-and-conquer. Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a rule.
*
* For more information, see:
*
* Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without Global Optimization. In: Fifteenth International Conference on Machine Learning, 144-151, 1998.
*
*
* BibTeX:
*
* @inproceedings{Frank1998,
* author = {Eibe Frank and Ian H. Witten},
* booktitle = {Fifteenth International Conference on Machine Learning},
* editor = {J. Shavlik},
* pages = {144-151},
* publisher = {Morgan Kaufmann},
* title = {Generating Accurate Rule Sets Without Global Optimization},
* year = {1998},
* PS = {http://www.cs.waikato.ac.nz/\~eibe/pubs/ML98-57.ps.gz}
* }
*
*
*
* Valid options are:
*
* -C <pruning confidence>
* Set confidence threshold for pruning.
* (default 0.25)
*
* -M <minimum number of objects>
* Set minimum number of objects per leaf.
* (default 2)
*
* -R
* Use reduced error pruning.
*
* -N <number of folds>
* Set number of folds for reduced error
* pruning. One fold is used as pruning set.
* (default 3)
*
* -B
* Use binary splits only.
*
* -U
* Generate unpruned decision list.
*
* -Q <seed>
* Seed for random data shuffling (default 1).
*
*
* @author Eibe Frank ([email protected])
* @version $Revision: 1.10 $
*/
public class PART
extends Classifier
implements OptionHandler, WeightedInstancesHandler, Summarizable,
AdditionalMeasureProducer, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 8121455039782598361L;
/** The decision list */
private MakeDecList m_root;
/** Confidence level */
private float m_CF = 0.25f;
/** Minimum number of objects */
private int m_minNumObj = 2;
/** Use reduced error pruning? */
private boolean m_reducedErrorPruning = false;
/** Number of folds for reduced error pruning. */
private int m_numFolds = 3;
/** Binary splits on nominal attributes? */
private boolean m_binarySplits = false;
/** Generate unpruned list? */
private boolean m_unpruned = false;
/** The seed for random number generation. */
private int m_Seed = 1;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return "Class for generating a PART decision list. Uses "
+ "separate-and-conquer. Builds a partial C4.5 decision tree "
+ "in each iteration and makes the \"best\" leaf into a rule.\n\n"
+ "For more information, see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Eibe Frank and Ian H. Witten");
result.setValue(Field.TITLE, "Generating Accurate Rule Sets Without Global Optimization");
result.setValue(Field.BOOKTITLE, "Fifteenth International Conference on Machine Learning");
result.setValue(Field.EDITOR, "J. Shavlik");
result.setValue(Field.YEAR, "1998");
result.setValue(Field.PAGES, "144-151");
result.setValue(Field.PUBLISHER, "Morgan Kaufmann");
result.setValue(Field.PS, "http://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result;
if (m_unpruned)
result = new MakeDecList(null, m_minNumObj).getCapabilities();
else if (m_reducedErrorPruning)
result = new MakeDecList(null, m_numFolds, m_minNumObj, m_Seed).getCapabilities();
else
result = new MakeDecList(null, m_CF, m_minNumObj).getCapabilities();
return result;
}
/**
* Generates the classifier.
*
* @param instances the data to train with
* @throws Exception if classifier can't be built successfully
*/
public void buildClassifier(Instances instances)
throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(instances);
// remove instances with missing class
instances = new Instances(instances);
instances.deleteWithMissingClass();
ModelSelection modSelection;
if (m_binarySplits)
modSelection = new BinC45ModelSelection(m_minNumObj, instances);
else
modSelection = new C45ModelSelection(m_minNumObj, instances);
if (m_unpruned)
m_root = new MakeDecList(modSelection, m_minNumObj);
else if (m_reducedErrorPruning)
m_root = new MakeDecList(modSelection, m_numFolds, m_minNumObj, m_Seed);
else
m_root = new MakeDecList(modSelection, m_CF, m_minNumObj);
m_root.buildClassifier(instances);
if (m_binarySplits) {
((BinC45ModelSelection)modSelection).cleanup();
} else {
((C45ModelSelection)modSelection).cleanup();
}
}
/**
* Classifies an instance.
*
* @param instance the instance to classify
* @return the classification
* @throws Exception if instance can't be classified successfully
*/
public double classifyInstance(Instance instance)
throws Exception {
return m_root.classifyInstance(instance);
}
/**
* Returns class probabilities for an instance.
*
* @param instance the instance to get the distribution for
* @return the class probabilities
* @throws Exception if the distribution can't be computed successfully
*/
public final double [] distributionForInstance(Instance instance)
throws Exception {
return m_root.distributionForInstance(instance);
}
/**
* Returns an enumeration describing the available options.
*
* Valid options are:
*
* -C confidence
* Set confidence threshold for pruning. (Default: 0.25)
*
* -M number
* Set minimum number of instances per leaf. (Default: 2)
*
* -R
* Use reduced error pruning.
*
* -N number
* Set number of folds for reduced error pruning. One fold is
* used as the pruning set. (Default: 3)
*
* -B
* Use binary splits for nominal attributes.
*
* -U
* Generate unpruned decision list.
*
* -Q
* The seed for reduced-error pruning.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(7);
newVector.
addElement(new Option("\tSet confidence threshold for pruning.\n" +
"\t(default 0.25)",
"C", 1, "-C "));
newVector.
addElement(new Option("\tSet minimum number of objects per leaf.\n" +
"\t(default 2)",
"M", 1, "-M "));
newVector.
addElement(new Option("\tUse reduced error pruning.",
"R", 0, "-R"));
newVector.
addElement(new Option("\tSet number of folds for reduced error\n" +
"\tpruning. One fold is used as pruning set.\n" +
"\t(default 3)",
"N", 1, "-N "));
newVector.
addElement(new Option("\tUse binary splits only.",
"B", 0, "-B"));
newVector.
addElement(new Option("\tGenerate unpruned decision list.",
"U", 0, "-U"));
newVector.
addElement(new Option("\tSeed for random data shuffling (default 1).",
"Q", 1, "-Q "));
return newVector.elements();
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -C <pruning confidence>
* Set confidence threshold for pruning.
* (default 0.25)
*
* -M <minimum number of objects>
* Set minimum number of objects per leaf.
* (default 2)
*
* -R
* Use reduced error pruning.
*
* -N <number of folds>
* Set number of folds for reduced error
* pruning. One fold is used as pruning set.
* (default 3)
*
* -B
* Use binary splits only.
*
* -U
* Generate unpruned decision list.
*
* -Q <seed>
* Seed for random data shuffling (default 1).
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
// Pruning options
m_unpruned = Utils.getFlag('U', options);
m_reducedErrorPruning = Utils.getFlag('R', options);
m_binarySplits = Utils.getFlag('B', options);
String confidenceString = Utils.getOption('C', options);
if (confidenceString.length() != 0) {
if (m_reducedErrorPruning) {
throw new Exception("Setting CF doesn't make sense " +
"for reduced error pruning.");
} else {
m_CF = (new Float(confidenceString)).floatValue();
if ((m_CF <= 0) || (m_CF >= 1)) {
throw new Exception("CF has to be greater than zero and smaller than one!");
}
}
} else {
m_CF = 0.25f;
}
String numFoldsString = Utils.getOption('N', options);
if (numFoldsString.length() != 0) {
if (!m_reducedErrorPruning) {
throw new Exception("Setting the number of folds" +
" does only make sense for" +
" reduced error pruning.");
} else {
m_numFolds = Integer.parseInt(numFoldsString);
}
} else {
m_numFolds = 3;
}
// Other options
String minNumString = Utils.getOption('M', options);
if (minNumString.length() != 0) {
m_minNumObj = Integer.parseInt(minNumString);
} else {
m_minNumObj = 2;
}
String seedString = Utils.getOption('Q', options);
if (seedString.length() != 0) {
m_Seed = Integer.parseInt(seedString);
} else {
m_Seed = 1;
}
}
/**
* Gets the current settings of the Classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] options = new String [11];
int current = 0;
if (m_unpruned) {
options[current++] = "-U";
}
if (m_reducedErrorPruning) {
options[current++] = "-R";
}
if (m_binarySplits) {
options[current++] = "-B";
}
options[current++] = "-M"; options[current++] = "" + m_minNumObj;
if (!m_reducedErrorPruning) {
options[current++] = "-C"; options[current++] = "" + m_CF;
}
if (m_reducedErrorPruning) {
options[current++] = "-N"; options[current++] = "" + m_numFolds;
}
options[current++] = "-Q"; options[current++] = "" + m_Seed;
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Returns a description of the classifier
*
* @return a string representation of the classifier
*/
public String toString() {
if (m_root == null) {
return "No classifier built";
}
return "PART decision list\n------------------\n\n" + m_root.toString();
}
/**
* Returns a superconcise version of the model
*
* @return a concise version of the model
*/
public String toSummaryString() {
return "Number of rules: " + m_root.numRules() + "\n";
}
/**
* Return the number of rules.
* @return the number of rules
*/
public double measureNumRules() {
return m_root.numRules();
}
/**
* Returns an enumeration of the additional measure names
* @return an enumeration of the measure names
*/
public Enumeration enumerateMeasures() {
Vector newVector = new Vector(1);
newVector.addElement("measureNumRules");
return newVector.elements();
}
/**
* Returns the value of the named measure
* @param additionalMeasureName the name of the measure to query for its value
* @return the value of the named measure
* @throws IllegalArgumentException if the named measure is not supported
*/
public double getMeasure(String additionalMeasureName) {
if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) {
return measureNumRules();
} else {
throw new IllegalArgumentException(additionalMeasureName
+ " not supported (PART)");
}
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String confidenceFactorTipText() {
return "The confidence factor used for pruning (smaller values incur "
+ "more pruning).";
}
/**
* Get the value of CF.
*
* @return Value of CF.
*/
public float getConfidenceFactor() {
return m_CF;
}
/**
* Set the value of CF.
*
* @param v Value to assign to CF.
*/
public void setConfidenceFactor(float v) {
m_CF = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String minNumObjTipText() {
return "The minimum number of instances per rule.";
}
/**
* Get the value of minNumObj.
*
* @return Value of minNumObj.
*/
public int getMinNumObj() {
return m_minNumObj;
}
/**
* Set the value of minNumObj.
*
* @param v Value to assign to minNumObj.
*/
public void setMinNumObj(int v) {
m_minNumObj = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String reducedErrorPruningTipText() {
return "Whether reduced-error pruning is used instead of C.4.5 pruning.";
}
/**
* Get the value of reducedErrorPruning.
*
* @return Value of reducedErrorPruning.
*/
public boolean getReducedErrorPruning() {
return m_reducedErrorPruning;
}
/**
* Set the value of reducedErrorPruning.
*
* @param v Value to assign to reducedErrorPruning.
*/
public void setReducedErrorPruning(boolean v) {
m_reducedErrorPruning = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String unprunedTipText() {
return "Whether pruning is performed.";
}
/**
* Get the value of unpruned.
*
* @return Value of unpruned.
*/
public boolean getUnpruned() {
return m_unpruned;
}
/**
* Set the value of unpruned.
*
* @param newunpruned Value to assign to unpruned.
*/
public void setUnpruned(boolean newunpruned) {
m_unpruned = newunpruned;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numFoldsTipText() {
return "Determines the amount of data used for reduced-error pruning. "
+ " One fold is used for pruning, the rest for growing the rules.";
}
/**
* Get the value of numFolds.
*
* @return Value of numFolds.
*/
public int getNumFolds() {
return m_numFolds;
}
/**
* Set the value of numFolds.
*
* @param v Value to assign to numFolds.
*/
public void setNumFolds(int v) {
m_numFolds = v;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String seedTipText() {
return "The seed used for randomizing the data " +
"when reduced-error pruning is used.";
}
/**
* Get the value of Seed.
*
* @return Value of Seed.
*/
public int getSeed() {
return m_Seed;
}
/**
* Set the value of Seed.
*
* @param newSeed Value to assign to Seed.
*/
public void setSeed(int newSeed) {
m_Seed = newSeed;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String binarySplitsTipText() {
return "Whether to use binary splits on nominal attributes when "
+ "building the partial trees.";
}
/**
* Get the value of binarySplits.
*
* @return Value of binarySplits.
*/
public boolean getBinarySplits() {
return m_binarySplits;
}
/**
* Set the value of binarySplits.
*
* @param v Value to assign to binarySplits.
*/
public void setBinarySplits(boolean v) {
m_binarySplits = v;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.10 $");
}
/**
* Main method for testing this class.
*
* @param argv command line options
*/
public static void main(String [] argv){
runClassifier(new PART(), argv);
}
}