All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.rules.PART Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    PART.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.rules;

import weka.classifiers.Classifier;
import weka.classifiers.rules.part.MakeDecList;
import weka.classifiers.trees.j48.BinC45ModelSelection;
import weka.classifiers.trees.j48.C45ModelSelection;
import weka.classifiers.trees.j48.ModelSelection;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Class for generating a PART decision list. Uses separate-and-conquer. Builds a partial C4.5 decision tree in each iteration and makes the "best" leaf into a rule.
*
* For more information, see:
*
* Eibe Frank, Ian H. Witten: Generating Accurate Rule Sets Without Global Optimization. In: Fifteenth International Conference on Machine Learning, 144-151, 1998. *

* * BibTeX: *

 * @inproceedings{Frank1998,
 *    author = {Eibe Frank and Ian H. Witten},
 *    booktitle = {Fifteenth International Conference on Machine Learning},
 *    editor = {J. Shavlik},
 *    pages = {144-151},
 *    publisher = {Morgan Kaufmann},
 *    title = {Generating Accurate Rule Sets Without Global Optimization},
 *    year = {1998},
 *    PS = {http://www.cs.waikato.ac.nz/\~eibe/pubs/ML98-57.ps.gz}
 * }
 * 
*

* * Valid options are:

* *

 -C <pruning confidence>
 *  Set confidence threshold for pruning.
 *  (default 0.25)
* *
 -M <minimum number of objects>
 *  Set minimum number of objects per leaf.
 *  (default 2)
* *
 -R
 *  Use reduced error pruning.
* *
 -N <number of folds>
 *  Set number of folds for reduced error
 *  pruning. One fold is used as pruning set.
 *  (default 3)
* *
 -B
 *  Use binary splits only.
* *
 -U
 *  Generate unpruned decision list.
* *
 -Q <seed>
 *  Seed for random data shuffling (default 1).
* * * @author Eibe Frank ([email protected]) * @version $Revision: 1.10 $ */ public class PART extends Classifier implements OptionHandler, WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 8121455039782598361L; /** The decision list */ private MakeDecList m_root; /** Confidence level */ private float m_CF = 0.25f; /** Minimum number of objects */ private int m_minNumObj = 2; /** Use reduced error pruning? */ private boolean m_reducedErrorPruning = false; /** Number of folds for reduced error pruning. */ private int m_numFolds = 3; /** Binary splits on nominal attributes? */ private boolean m_binarySplits = false; /** Generate unpruned list? */ private boolean m_unpruned = false; /** The seed for random number generation. */ private int m_Seed = 1; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for generating a PART decision list. Uses " + "separate-and-conquer. Builds a partial C4.5 decision tree " + "in each iteration and makes the \"best\" leaf into a rule.\n\n" + "For more information, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Eibe Frank and Ian H. Witten"); result.setValue(Field.TITLE, "Generating Accurate Rule Sets Without Global Optimization"); result.setValue(Field.BOOKTITLE, "Fifteenth International Conference on Machine Learning"); result.setValue(Field.EDITOR, "J. Shavlik"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.PAGES, "144-151"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.PS, "http://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result; if (m_unpruned) result = new MakeDecList(null, m_minNumObj).getCapabilities(); else if (m_reducedErrorPruning) result = new MakeDecList(null, m_numFolds, m_minNumObj, m_Seed).getCapabilities(); else result = new MakeDecList(null, m_CF, m_minNumObj).getCapabilities(); return result; } /** * Generates the classifier. * * @param instances the data to train with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); ModelSelection modSelection; if (m_binarySplits) modSelection = new BinC45ModelSelection(m_minNumObj, instances); else modSelection = new C45ModelSelection(m_minNumObj, instances); if (m_unpruned) m_root = new MakeDecList(modSelection, m_minNumObj); else if (m_reducedErrorPruning) m_root = new MakeDecList(modSelection, m_numFolds, m_minNumObj, m_Seed); else m_root = new MakeDecList(modSelection, m_CF, m_minNumObj); m_root.buildClassifier(instances); if (m_binarySplits) { ((BinC45ModelSelection)modSelection).cleanup(); } else { ((C45ModelSelection)modSelection).cleanup(); } } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { return m_root.classifyInstance(instance); } /** * Returns class probabilities for an instance. * * @param instance the instance to get the distribution for * @return the class probabilities * @throws Exception if the distribution can't be computed successfully */ public final double [] distributionForInstance(Instance instance) throws Exception { return m_root.distributionForInstance(instance); } /** * Returns an enumeration describing the available options. * * Valid options are:

* * -C confidence
* Set confidence threshold for pruning. (Default: 0.25)

* * -M number
* Set minimum number of instances per leaf. (Default: 2)

* * -R
* Use reduced error pruning.

* * -N number
* Set number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3)

* * -B
* Use binary splits for nominal attributes.

* * -U
* Generate unpruned decision list.

* * -Q
* The seed for reduced-error pruning.

* * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector. addElement(new Option("\tSet confidence threshold for pruning.\n" + "\t(default 0.25)", "C", 1, "-C ")); newVector. addElement(new Option("\tSet minimum number of objects per leaf.\n" + "\t(default 2)", "M", 1, "-M ")); newVector. addElement(new Option("\tUse reduced error pruning.", "R", 0, "-R")); newVector. addElement(new Option("\tSet number of folds for reduced error\n" + "\tpruning. One fold is used as pruning set.\n" + "\t(default 3)", "N", 1, "-N ")); newVector. addElement(new Option("\tUse binary splits only.", "B", 0, "-B")); newVector. addElement(new Option("\tGenerate unpruned decision list.", "U", 0, "-U")); newVector. addElement(new Option("\tSeed for random data shuffling (default 1).", "Q", 1, "-Q ")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -C <pruning confidence>
   *  Set confidence threshold for pruning.
   *  (default 0.25)
* *
 -M <minimum number of objects>
   *  Set minimum number of objects per leaf.
   *  (default 2)
* *
 -R
   *  Use reduced error pruning.
* *
 -N <number of folds>
   *  Set number of folds for reduced error
   *  pruning. One fold is used as pruning set.
   *  (default 3)
* *
 -B
   *  Use binary splits only.
* *
 -U
   *  Generate unpruned decision list.
* *
 -Q <seed>
   *  Seed for random data shuffling (default 1).
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { // Pruning options m_unpruned = Utils.getFlag('U', options); m_reducedErrorPruning = Utils.getFlag('R', options); m_binarySplits = Utils.getFlag('B', options); String confidenceString = Utils.getOption('C', options); if (confidenceString.length() != 0) { if (m_reducedErrorPruning) { throw new Exception("Setting CF doesn't make sense " + "for reduced error pruning."); } else { m_CF = (new Float(confidenceString)).floatValue(); if ((m_CF <= 0) || (m_CF >= 1)) { throw new Exception("CF has to be greater than zero and smaller than one!"); } } } else { m_CF = 0.25f; } String numFoldsString = Utils.getOption('N', options); if (numFoldsString.length() != 0) { if (!m_reducedErrorPruning) { throw new Exception("Setting the number of folds" + " does only make sense for" + " reduced error pruning."); } else { m_numFolds = Integer.parseInt(numFoldsString); } } else { m_numFolds = 3; } // Other options String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_minNumObj = Integer.parseInt(minNumString); } else { m_minNumObj = 2; } String seedString = Utils.getOption('Q', options); if (seedString.length() != 0) { m_Seed = Integer.parseInt(seedString); } else { m_Seed = 1; } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [11]; int current = 0; if (m_unpruned) { options[current++] = "-U"; } if (m_reducedErrorPruning) { options[current++] = "-R"; } if (m_binarySplits) { options[current++] = "-B"; } options[current++] = "-M"; options[current++] = "" + m_minNumObj; if (!m_reducedErrorPruning) { options[current++] = "-C"; options[current++] = "" + m_CF; } if (m_reducedErrorPruning) { options[current++] = "-N"; options[current++] = "" + m_numFolds; } options[current++] = "-Q"; options[current++] = "" + m_Seed; while (current < options.length) { options[current++] = ""; } return options; } /** * Returns a description of the classifier * * @return a string representation of the classifier */ public String toString() { if (m_root == null) { return "No classifier built"; } return "PART decision list\n------------------\n\n" + m_root.toString(); } /** * Returns a superconcise version of the model * * @return a concise version of the model */ public String toSummaryString() { return "Number of rules: " + m_root.numRules() + "\n"; } /** * Return the number of rules. * @return the number of rules */ public double measureNumRules() { return m_root.numRules(); } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(1); newVector.addElement("measureNumRules"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) { return measureNumRules(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (PART)"); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String confidenceFactorTipText() { return "The confidence factor used for pruning (smaller values incur " + "more pruning)."; } /** * Get the value of CF. * * @return Value of CF. */ public float getConfidenceFactor() { return m_CF; } /** * Set the value of CF. * * @param v Value to assign to CF. */ public void setConfidenceFactor(float v) { m_CF = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumObjTipText() { return "The minimum number of instances per rule."; } /** * Get the value of minNumObj. * * @return Value of minNumObj. */ public int getMinNumObj() { return m_minNumObj; } /** * Set the value of minNumObj. * * @param v Value to assign to minNumObj. */ public void setMinNumObj(int v) { m_minNumObj = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String reducedErrorPruningTipText() { return "Whether reduced-error pruning is used instead of C.4.5 pruning."; } /** * Get the value of reducedErrorPruning. * * @return Value of reducedErrorPruning. */ public boolean getReducedErrorPruning() { return m_reducedErrorPruning; } /** * Set the value of reducedErrorPruning. * * @param v Value to assign to reducedErrorPruning. */ public void setReducedErrorPruning(boolean v) { m_reducedErrorPruning = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String unprunedTipText() { return "Whether pruning is performed."; } /** * Get the value of unpruned. * * @return Value of unpruned. */ public boolean getUnpruned() { return m_unpruned; } /** * Set the value of unpruned. * * @param newunpruned Value to assign to unpruned. */ public void setUnpruned(boolean newunpruned) { m_unpruned = newunpruned; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numFoldsTipText() { return "Determines the amount of data used for reduced-error pruning. " + " One fold is used for pruning, the rest for growing the rules."; } /** * Get the value of numFolds. * * @return Value of numFolds. */ public int getNumFolds() { return m_numFolds; } /** * Set the value of numFolds. * * @param v Value to assign to numFolds. */ public void setNumFolds(int v) { m_numFolds = v; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The seed used for randomizing the data " + "when reduced-error pruning is used."; } /** * Get the value of Seed. * * @return Value of Seed. */ public int getSeed() { return m_Seed; } /** * Set the value of Seed. * * @param newSeed Value to assign to Seed. */ public void setSeed(int newSeed) { m_Seed = newSeed; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binarySplitsTipText() { return "Whether to use binary splits on nominal attributes when " + "building the partial trees."; } /** * Get the value of binarySplits. * * @return Value of binarySplits. */ public boolean getBinarySplits() { return m_binarySplits; } /** * Set the value of binarySplits. * * @param v Value to assign to binarySplits. */ public void setBinarySplits(boolean v) { m_binarySplits = v; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.10 $"); } /** * Main method for testing this class. * * @param argv command line options */ public static void main(String [] argv){ runClassifier(new PART(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy