All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.FT Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    FT.java
 *    Copyright (C) 2007 University of Porto, Porto, Portugal
 *
 */

package weka.classifiers.trees;

import weka.classifiers.Classifier;
import weka.classifiers.trees.ft.FTInnerNode;
import weka.classifiers.trees.ft.FTLeavesNode;
import weka.classifiers.trees.ft.FTNode;
import weka.classifiers.trees.ft.FTtree;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Classifier for building 'Functional trees', which are classification trees  that could have logistic regression functions at the inner nodes and/or leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values.
*
* For more information see:
*
* Joao Gama (2004). Functional Trees.
*
* Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. *

* * BibTeX: *

 * @article{Gama2004,
 *    author = {Joao Gama},
 *    booktitle = {Machine Learning},
 *    number = {3},
 *    pages = {219-250},
 *    title = {Functional Trees},
 *    volume = {55},
 *    year = {2004}
 * }
 * 
 * @article{Landwehr2005,
 *    author = {Niels Landwehr and Mark Hall and Eibe Frank},
 *    booktitle = {Machine Learning},
 *    number = {1-2},
 *    pages = {161-205},
 *    title = {Logistic Model Trees},
 *    volume = {95},
 *    year = {2005}
 * }
 * 
*

* * Valid options are:

* *

 -B
 *  Binary splits (convert nominal attributes to binary ones) 
* *
 -P
 *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
* *
 -I <numIterations>
 *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
* *
 -F <modelType>
 *  Set Funtional Tree type to be generate:  0 for FT, 1 for FTLeaves and 2 for FTInner
* *
 -M <numInstances>
 *  Set minimum number of instances at which a node can be split (default 15)
* *
 -W <beta>
 *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
* *
 -A
 *  The AIC is used to choose the best iteration.
* * * @author Jo\~{a}o Gama * @author Carlos Ferreira * @version $Revision: 5535 $ */ public class FT extends Classifier implements OptionHandler, AdditionalMeasureProducer, Drawable, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1113212459618105000L; /** Filter to replace missing values*/ protected ReplaceMissingValues m_replaceMissing; /** Filter to replace nominal attributes*/ protected NominalToBinary m_nominalToBinary; /** root of the logistic model tree*/ protected FTtree m_tree; /** convert nominal attributes to binary ?*/ protected boolean m_convertNominal; /**use error on probabilties instead of misclassification for stopping criterion of LogitBoost?*/ protected boolean m_errorOnProbabilities; /**minimum number of instances at which a node is considered for splitting*/ protected int m_minNumInstances; /**if non-zero, use fixed number of iterations for LogitBoost*/ protected int m_numBoostingIterations; /**Model Type, value: 0 is FT, 1 is FTLeaves, 2 is FTInner*/ protected int m_modelType; /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage * of total weights) are not included in the regression fit. **/ protected double m_weightTrimBeta; /** If true, the AIC is used to choose the best LogitBoost iteration*/ protected boolean m_useAIC ; /** model types */ public static final int MODEL_FT = 0; public static final int MODEL_FTLeaves = 1; public static final int MODEL_FTInner = 2; /** possible model types. */ public static final Tag [] TAGS_MODEL = { new Tag(MODEL_FT, "FT"), new Tag(MODEL_FTLeaves, "FTLeaves"), new Tag(MODEL_FTInner, "FTInner") }; /** * Creates an instance of FT with standard options */ public FT() { m_numBoostingIterations=15; m_minNumInstances = 15; m_weightTrimBeta = 0; m_useAIC = false; m_modelType=0; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds the classifier. * * @param data the data to train with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances data) throws Exception{ // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class Instances filteredData = new Instances(data); filteredData.deleteWithMissingClass(); //replace missing values m_replaceMissing = new ReplaceMissingValues(); m_replaceMissing.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, m_replaceMissing); //possibly convert nominal attributes globally if (m_convertNominal) { m_nominalToBinary = new NominalToBinary(); m_nominalToBinary.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, m_nominalToBinary); } int minNumInstances = 2; //create a FT tree root if (m_modelType==0) m_tree = new FTNode( m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, m_weightTrimBeta, m_useAIC); //create a FTLeaves tree root if (m_modelType==1){ m_tree = new FTLeavesNode(m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, m_weightTrimBeta, m_useAIC); } //create a FTInner tree root if (m_modelType==2) m_tree = new FTInnerNode(m_errorOnProbabilities, m_numBoostingIterations, m_minNumInstances, m_weightTrimBeta, m_useAIC); //build tree m_tree.buildClassifier(filteredData); // prune tree m_tree.prune(); m_tree.assignIDs(0); m_tree.cleanup(); } /** * Returns class probabilities for an instance. * * @param instance the instance to compute the distribution for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public double [] distributionForInstance(Instance instance) throws Exception { //replace missing values m_replaceMissing.input(instance); instance = m_replaceMissing.output(); //possibly convert nominal attributes if (m_convertNominal) { m_nominalToBinary.input(instance); instance = m_nominalToBinary.output(); } return m_tree.distributionForInstance(instance); } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { double maxProb = -1; int maxIndex = 0; //classify by maximum probability double[] probs = distributionForInstance(instance); for (int j = 0; j < instance.numClasses(); j++) { if (Utils.gr(probs[j], maxProb)) { maxIndex = j; maxProb = probs[j]; } } return (double)maxIndex; } /** * Returns a description of the classifier. * * @return a string representation of the classifier */ public String toString() { if (m_tree!=null) { if (m_modelType==0) return "FT tree \n------------------\n" + m_tree.toString(); else { if (m_modelType==1) return "FT Leaves tree \n------------------\n" + m_tree.toString(); else return "FT Inner tree \n------------------\n" + m_tree.toString(); } }else{ return "No tree built"; } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option("\tBinary splits (convert nominal attributes to binary ones) ", "B", 0, "-B")); newVector.addElement(new Option("\tUse error on probabilities instead of misclassification error "+ "for stopping criterion of LogitBoost.", "P", 0, "-P")); newVector.addElement(new Option("\tSet fixed number of iterations for LogitBoost (instead of using "+ "cross-validation)", "I",1,"-I ")); newVector.addElement(new Option("\tSet Funtional Tree type to be generate: "+ " 0 for FT, 1 for FTLeaves and 2 for FTInner", "F",1,"-F ")); newVector.addElement(new Option("\tSet minimum number of instances at which a node can be split (default 15)", "M",1,"-M ")); newVector.addElement(new Option("\tSet beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.", "W",1,"-W ")); newVector.addElement(new Option("\tThe AIC is used to choose the best iteration.", "A", 0, "-A")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -B
   *  Binary splits (convert nominal attributes to binary ones) 
* *
 -P
   *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
* *
 -I <numIterations>
   *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
* *
 -F <modelType>
   *  Set Funtional Tree type to be generate:  0 for FT, 1 for FTLeaves and 2 for FTInner
* *
 -M <numInstances>
   *  Set minimum number of instances at which a node can be split (default 15)
* *
 -W <beta>
   *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
* *
 -A
   *  The AIC is used to choose the best iteration.
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setBinSplit(Utils.getFlag('B', options)); setErrorOnProbabilities(Utils.getFlag('P', options)); String optionString = Utils.getOption('I', options); if (optionString.length() != 0) { setNumBoostingIterations((new Integer(optionString)).intValue()); } optionString = Utils.getOption('F', options); if (optionString.length() != 0) { setModelType(new SelectedTag(Integer.parseInt(optionString), TAGS_MODEL)); // setModelType((new Integer(optionString)).intValue()); } optionString = Utils.getOption('M', options); if (optionString.length() != 0) { setMinNumInstances((new Integer(optionString)).intValue()); } optionString = Utils.getOption('W', options); if (optionString.length() != 0) { setWeightTrimBeta((new Double(optionString)).doubleValue()); } setUseAIC(Utils.getFlag('A', options)); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[11]; int current = 0; if (getBinSplit()) { options[current++] = "-B"; } if (getErrorOnProbabilities()) { options[current++] = "-P"; } options[current++] = "-I"; options[current++] = ""+getNumBoostingIterations(); options[current++] = "-F"; // options[current++] = ""+getModelType(); options[current++] = ""+getModelType().getSelectedTag().getID(); options[current++] = "-M"; options[current++] = ""+getMinNumInstances(); options[current++] = "-W"; options[current++] = ""+getWeightTrimBeta(); if (getUseAIC()) { options[current++] = "-A"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Get the value of weightTrimBeta. */ public double getWeightTrimBeta(){ return m_weightTrimBeta; } /** * Get the value of useAIC. * * @return Value of useAIC. */ public boolean getUseAIC(){ return m_useAIC; } /** * Set the value of weightTrimBeta. */ public void setWeightTrimBeta(double n){ m_weightTrimBeta = n; } /** * Set the value of useAIC. * * @param c Value to assign to useAIC. */ public void setUseAIC(boolean c){ m_useAIC = c; } /** * Get the value of binarySplits. * * @return Value of binarySplits. */ public boolean getBinSplit(){ return m_convertNominal; } /** * Get the value of errorOnProbabilities. * * @return Value of errorOnProbabilities. */ public boolean getErrorOnProbabilities(){ return m_errorOnProbabilities; } /** * Get the value of numBoostingIterations. * * @return Value of numBoostingIterations. */ public int getNumBoostingIterations(){ return m_numBoostingIterations; } /** * Get the type of functional tree model being used. * * @return the type of functional tree model. */ public SelectedTag getModelType() { return new SelectedTag(m_modelType, TAGS_MODEL); } /** * Set the Functional Tree type. * * @param c Value corresponding to tree type. */ public void setModelType(SelectedTag newMethod){ if (newMethod.getTags() == TAGS_MODEL) { int c = newMethod.getSelectedTag().getID(); if (c==0 || c==1 || c==2) { m_modelType = c; } else { throw new IllegalArgumentException("Wrong model type, -F value should be: 0, for FT, 1, " + "for FTLeaves, and 2, for FTInner "); } } } /** * Get the value of minNumInstances. * * @return Value of minNumInstances. */ public int getMinNumInstances(){ return m_minNumInstances; } /** * Set the value of binarySplits. * * @param c Value to assign to binarySplits. */ public void setBinSplit(boolean c){ m_convertNominal=c; } /** * Set the value of errorOnProbabilities. * * @param c Value to assign to errorOnProbabilities. */ public void setErrorOnProbabilities(boolean c){ m_errorOnProbabilities = c; } /** * Set the value of numBoostingIterations. * * @param c Value to assign to numBoostingIterations. */ public void setNumBoostingIterations(int c){ m_numBoostingIterations = c; } /** * Set the value of minNumInstances. * * @param c Value to assign to minNumInstances. */ public void setMinNumInstances(int c){ m_minNumInstances = c; } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { return m_tree.graph(); } /** * Returns the size of the tree * @return the size of the tree */ public int measureTreeSize(){ return m_tree.numNodes(); } /** * Returns the number of leaves in the tree * @return the number of leaves in the tree */ public int measureNumLeaves(){ return m_tree.numLeaves(); } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(2); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { return measureNumLeaves(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (FT)"); } } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Classifier for building 'Functional trees', which are classification trees that could have " +"logistic regression functions at the inner nodes and/or leaves. The algorithm can deal with " +"binary and multi-class target variables, numeric and nominal attributes and missing values.\n\n" +"For more information see: \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Joao Gama"); result.setValue(Field.TITLE, "Functional Trees"); result.setValue(Field.BOOKTITLE, "Machine Learning"); result.setValue(Field.YEAR, "2004"); result.setValue(Field.VOLUME, "55"); result.setValue(Field.PAGES, "219-250"); result.setValue(Field.NUMBER, "3"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "Niels Landwehr and Mark Hall and Eibe Frank"); additional.setValue(Field.TITLE, "Logistic Model Trees"); additional.setValue(Field.BOOKTITLE, "Machine Learning"); additional.setValue(Field.YEAR, "2005"); additional.setValue(Field.VOLUME, "95"); additional.setValue(Field.PAGES, "161-205"); additional.setValue(Field.NUMBER, "1-2"); return result; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String modelTypeTipText() { return "The type of FT model. 0, for FT, 1, " + "for FTLeaves, and 2, for FTInner"; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binSplitTipText() { return "Convert all nominal attributes to binary ones before building the tree. " +"This means that all splits in the final tree will be binary."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String errorOnProbabilitiesTipText() { return "Minimize error on probabilities instead of misclassification error when cross-validating the number " +"of LogitBoost iterations. When set, the number of LogitBoost iterations is chosen that minimizes " +"the root mean squared error instead of the misclassification error."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numBoostingIterationsTipText() { return "Set a fixed number of iterations for LogitBoost. If >= 0, this sets a fixed number of LogitBoost " +"iterations that is used everywhere in the tree. If < 0, the number is cross-validated."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumInstancesTipText() { return "Set the minimum number of instances at which a node is considered for splitting. " +"The default value is 15."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightTrimBetaTipText() { return "Set the beta value used for weight trimming in LogitBoost. " +"Only instances carrying (1 - beta)% of the weight from previous iteration " +"are used in the next iteration. Set to 0 for no weight trimming. " +"The default value is 0."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useAICTipText() { return "The AIC is used to determine when to stop LogitBoost iterations. " +"The default is not to use AIC."; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5535 $"); } /** * Main method for testing this class * * @param argv the commandline options */ public static void main (String [] argv) { runClassifier(new FT(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy