All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.LMT Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LMT.java
 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import weka.classifiers.Classifier;
import weka.classifiers.trees.j48.C45ModelSelection;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.lmt.LMTNode;
import weka.classifiers.trees.lmt.ResidualModelSelection;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Classifier for building 'logistic model trees', which are classification trees with logistic regression functions at the leaves. The algorithm can deal with binary and multi-class target variables, numeric and nominal attributes and missing values.
*
* For more information see:
*
* Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. Machine Learning. 95(1-2):161-205.
*
* Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree Induction. In: 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, 675-683, 2005. *

* * BibTeX: *

 * @article{Landwehr2005,
 *    author = {Niels Landwehr and Mark Hall and Eibe Frank},
 *    journal = {Machine Learning},
 *    number = {1-2},
 *    pages = {161-205},
 *    title = {Logistic Model Trees},
 *    volume = {95},
 *    year = {2005}
 * }
 * 
 * @inproceedings{Sumner2005,
 *    author = {Marc Sumner and Eibe Frank and Mark Hall},
 *    booktitle = {9th European Conference on Principles and Practice of Knowledge Discovery in Databases},
 *    pages = {675-683},
 *    publisher = {Springer},
 *    title = {Speeding up Logistic Model Tree Induction},
 *    year = {2005}
 * }
 * 
*

* * Valid options are:

* *

 -B
 *  Binary splits (convert nominal attributes to binary ones)
* *
 -R
 *  Split on residuals instead of class values
* *
 -C
 *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)
* *
 -P
 *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
* *
 -I <numIterations>
 *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
* *
 -M <numInstances>
 *  Set minimum number of instances at which a node can be split (default 15)
* *
 -W <beta>
 *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
* *
 -A
 *  The AIC is used to choose the best iteration.
* * * @author Niels Landwehr * @author Marc Sumner * @version $Revision: 5535 $ */ public class LMT extends Classifier implements OptionHandler, AdditionalMeasureProducer, Drawable, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1113212459618104943L; /** Filter to replace missing values*/ protected ReplaceMissingValues m_replaceMissing; /** Filter to replace nominal attributes*/ protected NominalToBinary m_nominalToBinary; /** root of the logistic model tree*/ protected LMTNode m_tree; /** use heuristic that determines the number of LogitBoost iterations only once in the beginning?*/ protected boolean m_fastRegression; /** convert nominal attributes to binary ?*/ protected boolean m_convertNominal; /** split on residuals?*/ protected boolean m_splitOnResiduals; /**use error on probabilties instead of misclassification for stopping criterion of LogitBoost?*/ protected boolean m_errorOnProbabilities; /**minimum number of instances at which a node is considered for splitting*/ protected int m_minNumInstances; /**if non-zero, use fixed number of iterations for LogitBoost*/ protected int m_numBoostingIterations; /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage * of total weights) are not included in the regression fit. **/ protected double m_weightTrimBeta; /** If true, the AIC is used to choose the best LogitBoost iteration*/ private boolean m_useAIC = false; /** * Creates an instance of LMT with standard options */ public LMT() { m_fastRegression = true; m_numBoostingIterations = -1; m_minNumInstances = 15; m_weightTrimBeta = 0; m_useAIC = false; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Builds the classifier. * * @param data the data to train with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances data) throws Exception{ // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class Instances filteredData = new Instances(data); filteredData.deleteWithMissingClass(); //replace missing values m_replaceMissing = new ReplaceMissingValues(); m_replaceMissing.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, m_replaceMissing); //possibly convert nominal attributes globally if (m_convertNominal) { m_nominalToBinary = new NominalToBinary(); m_nominalToBinary.setInputFormat(filteredData); filteredData = Filter.useFilter(filteredData, m_nominalToBinary); } int minNumInstances = 2; //create ModelSelection object, either for splits on the residuals or for splits on the class value ModelSelection modSelection; if (m_splitOnResiduals) { modSelection = new ResidualModelSelection(minNumInstances); } else { modSelection = new C45ModelSelection(minNumInstances, filteredData); } //create tree root m_tree = new LMTNode(modSelection, m_numBoostingIterations, m_fastRegression, m_errorOnProbabilities, m_minNumInstances, m_weightTrimBeta, m_useAIC); //build tree m_tree.buildClassifier(filteredData); if (modSelection instanceof C45ModelSelection) ((C45ModelSelection)modSelection).cleanup(); } /** * Returns class probabilities for an instance. * * @param instance the instance to compute the distribution for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public double [] distributionForInstance(Instance instance) throws Exception { //replace missing values m_replaceMissing.input(instance); instance = m_replaceMissing.output(); //possibly convert nominal attributes if (m_convertNominal) { m_nominalToBinary.input(instance); instance = m_nominalToBinary.output(); } return m_tree.distributionForInstance(instance); } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { double maxProb = -1; int maxIndex = 0; //classify by maximum probability double[] probs = distributionForInstance(instance); for (int j = 0; j < instance.numClasses(); j++) { if (Utils.gr(probs[j], maxProb)) { maxIndex = j; maxProb = probs[j]; } } return (double)maxIndex; } /** * Returns a description of the classifier. * * @return a string representation of the classifier */ public String toString() { if (m_tree!=null) { return "Logistic model tree \n------------------\n" + m_tree.toString(); } else { return "No tree build"; } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option("\tBinary splits (convert nominal attributes to binary ones)", "B", 0, "-B")); newVector.addElement(new Option("\tSplit on residuals instead of class values", "R", 0, "-R")); newVector.addElement(new Option("\tUse cross-validation for boosting at all nodes (i.e., disable heuristic)", "C", 0, "-C")); newVector.addElement(new Option("\tUse error on probabilities instead of misclassification error "+ "for stopping criterion of LogitBoost.", "P", 0, "-P")); newVector.addElement(new Option("\tSet fixed number of iterations for LogitBoost (instead of using "+ "cross-validation)", "I",1,"-I ")); newVector.addElement(new Option("\tSet minimum number of instances at which a node can be split (default 15)", "M",1,"-M ")); newVector.addElement(new Option("\tSet beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.", "W",1,"-W ")); newVector.addElement(new Option("\tThe AIC is used to choose the best iteration.", "A", 0, "-A")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -B
   *  Binary splits (convert nominal attributes to binary ones)
* *
 -R
   *  Split on residuals instead of class values
* *
 -C
   *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)
* *
 -P
   *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
* *
 -I <numIterations>
   *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
* *
 -M <numInstances>
   *  Set minimum number of instances at which a node can be split (default 15)
* *
 -W <beta>
   *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
* *
 -A
   *  The AIC is used to choose the best iteration.
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setConvertNominal(Utils.getFlag('B', options)); setSplitOnResiduals(Utils.getFlag('R', options)); setFastRegression(!Utils.getFlag('C', options)); setErrorOnProbabilities(Utils.getFlag('P', options)); String optionString = Utils.getOption('I', options); if (optionString.length() != 0) { setNumBoostingIterations((new Integer(optionString)).intValue()); } optionString = Utils.getOption('M', options); if (optionString.length() != 0) { setMinNumInstances((new Integer(optionString)).intValue()); } optionString = Utils.getOption('W', options); if (optionString.length() != 0) { setWeightTrimBeta((new Double(optionString)).doubleValue()); } setUseAIC(Utils.getFlag('A', options)); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[11]; int current = 0; if (getConvertNominal()) { options[current++] = "-B"; } if (getSplitOnResiduals()) { options[current++] = "-R"; } if (!getFastRegression()) { options[current++] = "-C"; } if (getErrorOnProbabilities()) { options[current++] = "-P"; } options[current++] = "-I"; options[current++] = ""+getNumBoostingIterations(); options[current++] = "-M"; options[current++] = ""+getMinNumInstances(); options[current++] = "-W"; options[current++] = ""+getWeightTrimBeta(); if (getUseAIC()) { options[current++] = "-A"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Get the value of weightTrimBeta. */ public double getWeightTrimBeta(){ return m_weightTrimBeta; } /** * Get the value of useAIC. * * @return Value of useAIC. */ public boolean getUseAIC(){ return m_useAIC; } /** * Set the value of weightTrimBeta. */ public void setWeightTrimBeta(double n){ m_weightTrimBeta = n; } /** * Set the value of useAIC. * * @param c Value to assign to useAIC. */ public void setUseAIC(boolean c){ m_useAIC = c; } /** * Get the value of convertNominal. * * @return Value of convertNominal. */ public boolean getConvertNominal(){ return m_convertNominal; } /** * Get the value of splitOnResiduals. * * @return Value of splitOnResiduals. */ public boolean getSplitOnResiduals(){ return m_splitOnResiduals; } /** * Get the value of fastRegression. * * @return Value of fastRegression. */ public boolean getFastRegression(){ return m_fastRegression; } /** * Get the value of errorOnProbabilities. * * @return Value of errorOnProbabilities. */ public boolean getErrorOnProbabilities(){ return m_errorOnProbabilities; } /** * Get the value of numBoostingIterations. * * @return Value of numBoostingIterations. */ public int getNumBoostingIterations(){ return m_numBoostingIterations; } /** * Get the value of minNumInstances. * * @return Value of minNumInstances. */ public int getMinNumInstances(){ return m_minNumInstances; } /** * Set the value of convertNominal. * * @param c Value to assign to convertNominal. */ public void setConvertNominal(boolean c){ m_convertNominal = c; } /** * Set the value of splitOnResiduals. * * @param c Value to assign to splitOnResiduals. */ public void setSplitOnResiduals(boolean c){ m_splitOnResiduals = c; } /** * Set the value of fastRegression. * * @param c Value to assign to fastRegression. */ public void setFastRegression(boolean c){ m_fastRegression = c; } /** * Set the value of errorOnProbabilities. * * @param c Value to assign to errorOnProbabilities. */ public void setErrorOnProbabilities(boolean c){ m_errorOnProbabilities = c; } /** * Set the value of numBoostingIterations. * * @param c Value to assign to numBoostingIterations. */ public void setNumBoostingIterations(int c){ m_numBoostingIterations = c; } /** * Set the value of minNumInstances. * * @param c Value to assign to minNumInstances. */ public void setMinNumInstances(int c){ m_minNumInstances = c; } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { return m_tree.graph(); } /** * Returns the size of the tree * @return the size of the tree */ public int measureTreeSize(){ return m_tree.numNodes(); } /** * Returns the number of leaves in the tree * @return the number of leaves in the tree */ public int measureNumLeaves(){ return m_tree.numLeaves(); } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(2); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) { return measureTreeSize(); } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) { return measureNumLeaves(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (LMT)"); } } /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Classifier for building 'logistic model trees', which are classification trees with " +"logistic regression functions at the leaves. The algorithm can deal with binary and multi-class " +"target variables, numeric and nominal attributes and missing values.\n\n" +"For more information see: \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Niels Landwehr and Mark Hall and Eibe Frank"); result.setValue(Field.TITLE, "Logistic Model Trees"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.YEAR, "2005"); result.setValue(Field.VOLUME, "95"); result.setValue(Field.PAGES, "161-205"); result.setValue(Field.NUMBER, "1-2"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Marc Sumner and Eibe Frank and Mark Hall"); additional.setValue(Field.TITLE, "Speeding up Logistic Model Tree Induction"); additional.setValue(Field.BOOKTITLE, "9th European Conference on Principles and Practice of Knowledge Discovery in Databases"); additional.setValue(Field.YEAR, "2005"); additional.setValue(Field.PAGES, "675-683"); additional.setValue(Field.PUBLISHER, "Springer"); return result; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String convertNominalTipText() { return "Convert all nominal attributes to binary ones before building the tree. " +"This means that all splits in the final tree will be binary."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String splitOnResidualsTipText() { return "Set splitting criterion based on the residuals of LogitBoost. " +"There are two possible splitting criteria for LMT: the default is to use the C4.5 " +"splitting criterion that uses information gain on the class variable. The other splitting " +"criterion tries to improve the purity in the residuals produces when fitting the logistic " +"regression functions. The choice of the splitting criterion does not usually affect classification " +"accuracy much, but can produce different trees."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String fastRegressionTipText() { return "Use heuristic that avoids cross-validating the number of Logit-Boost iterations at every node. " +"When fitting the logistic regression functions at a node, LMT has to determine the number of LogitBoost " +"iterations to run. Originally, this number was cross-validated at every node in the tree. " +"To save time, this heuristic cross-validates the number only once and then uses that number at every " +"node in the tree. Usually this does not decrease accuracy but improves runtime considerably."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String errorOnProbabilitiesTipText() { return "Minimize error on probabilities instead of misclassification error when cross-validating the number " +"of LogitBoost iterations. When set, the number of LogitBoost iterations is chosen that minimizes " +"the root mean squared error instead of the misclassification error."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numBoostingIterationsTipText() { return "Set a fixed number of iterations for LogitBoost. If >= 0, this sets a fixed number of LogitBoost " +"iterations that is used everywhere in the tree. If < 0, the number is cross-validated."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNumInstancesTipText() { return "Set the minimum number of instances at which a node is considered for splitting. " +"The default value is 15."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String weightTrimBetaTipText() { return "Set the beta value used for weight trimming in LogitBoost. " +"Only instances carrying (1 - beta)% of the weight from previous iteration " +"are used in the next iteration. Set to 0 for no weight trimming. " +"The default value is 0."; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useAICTipText() { return "The AIC is used to determine when to stop LogitBoost iterations. " +"The default is not to use AIC."; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5535 $"); } /** * Main method for testing this class * * @param argv the commandline options */ public static void main (String [] argv) { runClassifier(new LMT(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy