All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.lmt.LogisticBase Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LogisticBase.java
 *    Copyright (C) 2003 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees.lmt;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.SimpleLinearRegression;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 * Base/helper class for building logistic regression models with the LogitBoost algorithm.
 * Used for building logistic model trees (weka.classifiers.trees.lmt.LMT)
 * and standalone logistic regression (weka.classifiers.functions.SimpleLogistic).
 *
 
 * Valid options are: 

* *

 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Niels Landwehr * @author Marc Sumner * @version $Revision: 1.9 $ */ public class LogisticBase extends Classifier implements WeightedInstancesHandler { /** for serialization */ static final long serialVersionUID = 168765678097825064L; /** Header-only version of the numeric version of the training data*/ protected Instances m_numericDataHeader; /** * Numeric version of the training data. Original class is replaced by a numeric pseudo-class. */ protected Instances m_numericData; /** Training data */ protected Instances m_train; /** Use cross-validation to determine best number of LogitBoost iterations ?*/ protected boolean m_useCrossValidation; /**Use error on probabilities for stopping criterion of LogitBoost? */ protected boolean m_errorOnProbabilities; /**Use fixed number of iterations for LogitBoost? (if negative, cross-validate number of iterations)*/ protected int m_fixedNumIterations; /**Use heuristic to stop performing LogitBoost iterations earlier? * If enabled, LogitBoost is stopped if the current (local) minimum of the error on a test set as * a function of the number of iterations has not changed for m_heuristicStop iterations. */ protected int m_heuristicStop = 50; /**The number of LogitBoost iterations performed.*/ protected int m_numRegressions = 0; /**The maximum number of LogitBoost iterations*/ protected int m_maxIterations; /**The number of different classes*/ protected int m_numClasses; /**Array holding the simple regression functions fit by LogitBoost*/ protected SimpleLinearRegression[][] m_regressions; /**Number of folds for cross-validating number of LogitBoost iterations*/ protected static int m_numFoldsBoosting = 5; /**Threshold on the Z-value for LogitBoost*/ protected static final double Z_MAX = 3; /** If true, the AIC is used to choose the best iteration*/ private boolean m_useAIC = false; /** Effective number of parameters used for AIC / BIC automatic stopping */ protected double m_numParameters = 0; /**Threshold for trimming weights. Instances with a weight lower than this (as a percentage * of total weights) are not included in the regression fit. **/ protected double m_weightTrimBeta = 0; /** * Constructor that creates LogisticBase object with standard options. */ public LogisticBase(){ m_fixedNumIterations = -1; m_useCrossValidation = true; m_errorOnProbabilities = false; m_maxIterations = 500; m_useAIC = false; m_numParameters = 0; } /** * Constructor to create LogisticBase object. * @param numBoostingIterations fixed number of iterations for LogitBoost (if negative, use cross-validation or * stopping criterion on the training data). * @param useCrossValidation cross-validate number of LogitBoost iterations (if false, use stopping * criterion on the training data). * @param errorOnProbabilities if true, use error on probabilities * instead of misclassification for stopping criterion of LogitBoost */ public LogisticBase(int numBoostingIterations, boolean useCrossValidation, boolean errorOnProbabilities){ m_fixedNumIterations = numBoostingIterations; m_useCrossValidation = useCrossValidation; m_errorOnProbabilities = errorOnProbabilities; m_maxIterations = 500; m_useAIC = false; m_numParameters = 0; } /** * Builds the logistic regression model usiing LogitBoost. * * @param data the training data * @throws Exception if something goes wrong */ public void buildClassifier(Instances data) throws Exception { m_train = new Instances(data); m_numClasses = m_train.numClasses(); //init the array of simple regression functions m_regressions = initRegressions(); m_numRegressions = 0; //get numeric version of the training data (class variable replaced by numeric pseudo-class) m_numericData = getNumericData(m_train); //save header info m_numericDataHeader = new Instances(m_numericData, 0); if (m_fixedNumIterations > 0) { //run LogitBoost for fixed number of iterations performBoosting(m_fixedNumIterations); } else if (m_useAIC) { // Marc had this after the test for m_useCrossValidation. Changed by Eibe. //run LogitBoost using information criterion for stopping performBoostingInfCriterion(); } else if (m_useCrossValidation) { //cross-validate number of LogitBoost iterations performBoostingCV(); } else { //run LogitBoost with number of iterations that minimizes error on the training set performBoosting(); } //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations m_regressions = selectRegressions(m_regressions); } /** * Runs LogitBoost, determining the best number of iterations by cross-validation. * * @throws Exception if something goes wrong */ protected void performBoostingCV() throws Exception{ //completed iteration keeps track of the number of iterations that have been //performed in every fold (some might stop earlier than others). //Best iteration is selected only from these. int completedIterations = m_maxIterations; Instances allData = new Instances(m_train); allData.stratify(m_numFoldsBoosting); double[] error = new double[m_maxIterations + 1]; for (int i = 0; i < m_numFoldsBoosting; i++) { //split into training/test data in fold Instances train = allData.trainCV(m_numFoldsBoosting,i); Instances test = allData.testCV(m_numFoldsBoosting,i); //initialize LogitBoost m_numRegressions = 0; m_regressions = initRegressions(); //run LogitBoost iterations int iterations = performBoosting(train,test,error,completedIterations); if (iterations < completedIterations) completedIterations = iterations; } //determine iteration with minimum error over the folds int bestIteration = getBestIteration(error,completedIterations); //rebuild model on all of the training data m_numRegressions = 0; performBoosting(bestIteration); } /** * Runs LogitBoost, determining the best number of iterations by an information criterion (currently AIC). */ protected void performBoostingInfCriterion() throws Exception{ double criterion = 0.0; double bestCriterion = Double.MAX_VALUE; int bestIteration = 0; int noMin = 0; // Variable to keep track of criterion values (AIC) double criterionValue = Double.MAX_VALUE; // initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); // Array with true/false if the attribute is included in the model or not boolean[][] attributes = new boolean[m_numClasses][m_numericDataHeader.numAttributes()]; int iteration = 0; while (iteration < m_maxIterations) { //perform single LogitBoost iteration boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { //could not fit simple linear regression: stop LogitBoost break; } double numberOfAttributes = m_numParameters + iteration; // Fill criterion array values criterionValue = 2.0 * negativeLogLikelihood(trainYs, probs) + 2.0 * numberOfAttributes; //heuristic: stop LogitBoost if the current minimum has not changed for iterations if (noMin > m_heuristicStop) break; if (criterionValue < bestCriterion) { bestCriterion = criterionValue; bestIteration = iteration; noMin = 0; } else { noMin++; } } m_numRegressions = 0; performBoosting(bestIteration); } /** * Runs LogitBoost on a training set and monitors the error on a test set. * Used for running one fold when cross-validating the number of LogitBoost iterations. * @param train the training set * @param test the test set * @param error array to hold the logged error values * @param maxIterations the maximum number of LogitBoost iterations to run * @return the number of completed LogitBoost iterations (can be smaller than maxIterations * if the heuristic for early stopping is active or there is a problem while fitting the regressions * in LogitBoost). * @throws Exception if something goes wrong */ protected int performBoosting(Instances train, Instances test, double[] error, int maxIterations) throws Exception{ //get numeric version of the (sub)set of training instances Instances numericTrain = getNumericData(train); //initialize Ys/Fs/ps double[][] trainYs = getYs(train); double[][] trainFs = getFs(numericTrain); double[][] probs = getProbs(trainFs); int iteration = 0; int noMin = 0; double lastMin = Double.MAX_VALUE; if (m_errorOnProbabilities) error[0] += getMeanAbsoluteError(test); else error[0] += getErrorRate(test); while (iteration < maxIterations) { //perform single LogitBoost iteration boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, numericTrain); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { //could not fit simple linear regression: stop LogitBoost break; } if (m_errorOnProbabilities) error[iteration] += getMeanAbsoluteError(test); else error[iteration] += getErrorRate(test); //heuristic: stop LogitBoost if the current minimum has not changed for iterations if (noMin > m_heuristicStop) break; if (error[iteration] < lastMin) { lastMin = error[iteration]; noMin = 0; } else { noMin++; } } return iteration; } /** * Runs LogitBoost with a fixed number of iterations. * @param numIterations the number of iterations to run * @throws Exception if something goes wrong */ protected void performBoosting(int numIterations) throws Exception{ //initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); int iteration = 0; //run iterations while (iteration < numIterations) { boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) iteration++; else break; } m_numRegressions = iteration; } /** * Runs LogitBoost using the stopping criterion on the training set. * The number of iterations is used that gives the lowest error on the training set, either misclassification * or error on probabilities (depending on the errorOnProbabilities option). * @throws Exception if something goes wrong */ protected void performBoosting() throws Exception{ //initialize Ys/Fs/ps double[][] trainYs = getYs(m_train); double[][] trainFs = getFs(m_numericData); double[][] probs = getProbs(trainFs); int iteration = 0; double[] trainErrors = new double[m_maxIterations+1]; trainErrors[0] = getErrorRate(m_train); int noMin = 0; double lastMin = Double.MAX_VALUE; while (iteration < m_maxIterations) { boolean foundAttribute = performIteration(iteration, trainYs, trainFs, probs, m_numericData); if (foundAttribute) { iteration++; m_numRegressions = iteration; } else { //could not fit simple regression break; } trainErrors[iteration] = getErrorRate(m_train); //heuristic: stop LogitBoost if the current minimum has not changed for iterations if (noMin > m_heuristicStop) break; if (trainErrors[iteration] < lastMin) { lastMin = trainErrors[iteration]; noMin = 0; } else { noMin++; } } //find iteration with best error m_numRegressions = getBestIteration(trainErrors, iteration); } /** * Returns the misclassification error of the current model on a set of instances. * @param data the set of instances * @return the error rate * @throws Exception if something goes wrong */ protected double getErrorRate(Instances data) throws Exception { Evaluation eval = new Evaluation(data); eval.evaluateModel(this,data); return eval.errorRate(); } /** * Returns the error of the probability estimates for the current model on a set of instances. * @param data the set of instances * @return the error * @throws Exception if something goes wrong */ protected double getMeanAbsoluteError(Instances data) throws Exception { Evaluation eval = new Evaluation(data); eval.evaluateModel(this,data); return eval.meanAbsoluteError(); } /** * Helper function to find the minimum in an array of error values. * * @param errors an array containing errors * @param maxIteration the maximum of iterations * @return the minimum */ protected int getBestIteration(double[] errors, int maxIteration) { double bestError = errors[0]; int bestIteration = 0; for (int i = 1; i <= maxIteration; i++) { if (errors[i] < bestError) { bestError = errors[i]; bestIteration = i; } } return bestIteration; } /** * Performs a single iteration of LogitBoost, and updates the model accordingly. * A simple regression function is fit to the response and added to the m_regressions array. * @param iteration the current iteration * @param trainYs the y-values (see description of LogitBoost) for the model trained so far * @param trainFs the F-values (see description of LogitBoost) for the model trained so far * @param probs the p-values (see description of LogitBoost) for the model trained so far * @param trainNumeric numeric version of the training data * @return returns true if iteration performed successfully, false if no simple regression function * could be fitted. * @throws Exception if something goes wrong */ protected boolean performIteration(int iteration, double[][] trainYs, double[][] trainFs, double[][] probs, Instances trainNumeric) throws Exception { for (int j = 0; j < m_numClasses; j++) { // Keep track of sum of weights double[] weights = new double[trainNumeric.numInstances()]; double weightSum = 0.0; //make copy of data (need to save the weights) Instances boostData = new Instances(trainNumeric); for (int i = 0; i < trainNumeric.numInstances(); i++) { //compute response and weight double p = probs[i][j]; double actual = trainYs[i][j]; double z = getZ(actual, p); double w = (actual - p) / z; //set values for instance Instance current = boostData.instance(i); current.setValue(boostData.classIndex(), z); current.setWeight(current.weight() * w); weights[i] = current.weight(); weightSum += current.weight(); } Instances instancesCopy = new Instances(boostData); if (weightSum > 0) { // Only the (1-beta)th quantile of instances are sent to the base classifier if (m_weightTrimBeta > 0) { double weightPercentage = 0.0; int[] weightsOrder = new int[trainNumeric.numInstances()]; weightsOrder = Utils.sort(weights); instancesCopy.delete(); for (int i = weightsOrder.length-1; (i >= 0) && (weightPercentage < (1-m_weightTrimBeta)); i--) { instancesCopy.add(boostData.instance(weightsOrder[i])); weightPercentage += (weights[weightsOrder[i]] / weightSum); } } //Scale the weights weightSum = instancesCopy.sumOfWeights(); for (int i = 0; i < instancesCopy.numInstances(); i++) { Instance current = instancesCopy.instance(i); current.setWeight(current.weight() * (double)instancesCopy.numInstances() / weightSum); } } //fit simple regression function m_regressions[j][iteration].buildClassifier(instancesCopy); boolean foundAttribute = m_regressions[j][iteration].foundUsefulAttribute(); if (!foundAttribute) { //could not fit simple regression function return false; } } // Evaluate / increment trainFs from the classifier for (int i = 0; i < trainFs.length; i++) { double [] pred = new double [m_numClasses]; double predSum = 0; for (int j = 0; j < m_numClasses; j++) { pred[j] = m_regressions[j][iteration] .classifyInstance(trainNumeric.instance(i)); predSum += pred[j]; } predSum /= m_numClasses; for (int j = 0; j < m_numClasses; j++) { trainFs[i][j] += (pred[j] - predSum) * (m_numClasses - 1) / m_numClasses; } } // Compute the current probability estimates for (int i = 0; i < trainYs.length; i++) { probs[i] = probs(trainFs[i]); } return true; } /** * Helper function to initialize m_regressions. * * @return the generated classifiers */ protected SimpleLinearRegression[][] initRegressions(){ SimpleLinearRegression[][] classifiers = new SimpleLinearRegression[m_numClasses][m_maxIterations]; for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < m_maxIterations; i++) { classifiers[j][i] = new SimpleLinearRegression(); classifiers[j][i].setSuppressErrorMessage(true); } } return classifiers; } /** * Converts training data to numeric version. The class variable is replaced by a pseudo-class * used by LogitBoost. * * @param data the data to convert * @return the converted data * @throws Exception if something goes wrong */ protected Instances getNumericData(Instances data) throws Exception{ Instances numericData = new Instances(data); int classIndex = numericData.classIndex(); numericData.setClassIndex(-1); numericData.deleteAttributeAt(classIndex); numericData.insertAttributeAt(new Attribute("'pseudo class'"), classIndex); numericData.setClassIndex(classIndex); return numericData; } /** * Helper function for cutting back m_regressions to the set of classifiers * (corresponsing to the number of LogitBoost iterations) that gave the * smallest error. * * @param classifiers the original set of classifiers * @return the cut back set of classifiers */ protected SimpleLinearRegression[][] selectRegressions(SimpleLinearRegression[][] classifiers){ SimpleLinearRegression[][] goodClassifiers = new SimpleLinearRegression[m_numClasses][m_numRegressions]; for (int j = 0; j < m_numClasses; j++) { for (int i = 0; i < m_numRegressions; i++) { goodClassifiers[j][i] = classifiers[j][i]; } } return goodClassifiers; } /** * Computes the LogitBoost response variable from y/p values * (actual/estimated class probabilities). * * @param actual the actual class probability * @param p the estimated class probability * @return the LogitBoost response */ protected double getZ(double actual, double p) { double z; if (actual == 1) { z = 1.0 / p; if (z > Z_MAX) { // threshold z = Z_MAX; } } else { z = -1.0 / (1.0 - p); if (z < -Z_MAX) { // threshold z = -Z_MAX; } } return z; } /** * Computes the LogitBoost response for an array of y/p values * (actual/estimated class probabilities). * * @param dataYs the actual class probabilities * @param probs the estimated class probabilities * @return the LogitBoost response */ protected double[][] getZs(double[][] probs, double[][] dataYs) { double[][] dataZs = new double[probs.length][m_numClasses]; for (int j = 0; j < m_numClasses; j++) for (int i = 0; i < probs.length; i++) dataZs[i][j] = getZ(dataYs[i][j], probs[i][j]); return dataZs; } /** * Computes the LogitBoost weights from an array of y/p values * (actual/estimated class probabilities). * * @param dataYs the actual class probabilities * @param probs the estimated class probabilities * @return the LogitBoost weights */ protected double[][] getWs(double[][] probs, double[][] dataYs) { double[][] dataWs = new double[probs.length][m_numClasses]; for (int j = 0; j < m_numClasses; j++) for (int i = 0; i < probs.length; i++){ double z = getZ(dataYs[i][j], probs[i][j]); dataWs[i][j] = (dataYs[i][j] - probs[i][j]) / z; } return dataWs; } /** * Computes the p-values (probabilities for the classes) from the F-values * of the logistic model. * * @param Fs the F-values * @return the p-values */ protected double[] probs(double[] Fs) { double maxF = -Double.MAX_VALUE; for (int i = 0; i < Fs.length; i++) { if (Fs[i] > maxF) { maxF = Fs[i]; } } double sum = 0; double[] probs = new double[Fs.length]; for (int i = 0; i < Fs.length; i++) { probs[i] = Math.exp(Fs[i] - maxF); sum += probs[i]; } Utils.normalize(probs, sum); return probs; } /** * Computes the Y-values (actual class probabilities) for a set of instances. * * @param data the data to compute the Y-values from * @return the Y-values */ protected double[][] getYs(Instances data){ double [][] dataYs = new double [data.numInstances()][m_numClasses]; for (int j = 0; j < m_numClasses; j++) { for (int k = 0; k < data.numInstances(); k++) { dataYs[k][j] = (data.instance(k).classValue() == j) ? 1.0: 0.0; } } return dataYs; } /** * Computes the F-values for a single instance. * * @param instance the instance to compute the F-values for * @return the F-values * @throws Exception if something goes wrong */ protected double[] getFs(Instance instance) throws Exception{ double [] pred = new double [m_numClasses]; double [] instanceFs = new double [m_numClasses]; //add up the predictions from the simple regression functions for (int i = 0; i < m_numRegressions; i++) { double predSum = 0; for (int j = 0; j < m_numClasses; j++) { pred[j] = m_regressions[j][i].classifyInstance(instance); predSum += pred[j]; } predSum /= m_numClasses; for (int j = 0; j < m_numClasses; j++) { instanceFs[j] += (pred[j] - predSum) * (m_numClasses - 1) / m_numClasses; } } return instanceFs; } /** * Computes the F-values for a set of instances. * * @param data the data to work on * @return the F-values * @throws Exception if something goes wrong */ protected double[][] getFs(Instances data) throws Exception{ double[][] dataFs = new double[data.numInstances()][]; for (int k = 0; k < data.numInstances(); k++) { dataFs[k] = getFs(data.instance(k)); } return dataFs; } /** * Computes the p-values (probabilities for the different classes) from * the F-values for a set of instances. * * @param dataFs the F-values * @return the p-values */ protected double[][] getProbs(double[][] dataFs){ int numInstances = dataFs.length; double[][] probs = new double[numInstances][]; for (int k = 0; k < numInstances; k++) { probs[k] = probs(dataFs[k]); } return probs; } /** * Returns the negative loglikelihood of the Y-values (actual class probabilities) given the * p-values (current probability estimates). * * @param dataYs the Y-values * @param probs the p-values * @return the likelihood */ protected double negativeLogLikelihood(double[][] dataYs, double[][] probs) { double logLikelihood = 0; for (int i = 0; i < dataYs.length; i++) { for (int j = 0; j < m_numClasses; j++) { if (dataYs[i][j] == 1.0) { logLikelihood -= Math.log(probs[i][j]); } } } return logLikelihood;// / (double)dataYs.length; } /** * Returns an array of the indices of the attributes used in the logistic model. * The first dimension is the class, the second dimension holds a list of attribute indices. * Attribute indices start at zero. * @return the array of attribute indices */ public int[][] getUsedAttributes(){ int[][] usedAttributes = new int[m_numClasses][]; //first extract coefficients double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++){ //boolean array indicating if attribute used boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; for (int i = 0; i < attributes.length; i++) { //attribute used if coefficient > 0 if (!Utils.eq(coefficients[j][i + 1],0)) attributes[i] = true; } int numAttributes = 0; for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) if (attributes[i]) numAttributes++; //"collect" all attributes into array of indices int[] usedAttributesClass = new int[numAttributes]; int count = 0; for (int i = 0; i < m_numericDataHeader.numAttributes(); i++) { if (attributes[i]) { usedAttributesClass[count] = i; count++; } } usedAttributes[j] = usedAttributesClass; } return usedAttributes; } /** * The number of LogitBoost iterations performed (= the number of simple * regression functions fit). * * @return the number of LogitBoost iterations performed */ public int getNumRegressions() { return m_numRegressions; } /** * Get the value of weightTrimBeta. * * @return Value of weightTrimBeta. */ public double getWeightTrimBeta(){ return m_weightTrimBeta; } /** * Get the value of useAIC. * * @return Value of useAIC. */ public boolean getUseAIC(){ return m_useAIC; } /** * Sets the parameter "maxIterations". * * @param maxIterations the maximum iterations */ public void setMaxIterations(int maxIterations) { m_maxIterations = maxIterations; } /** * Sets the option "heuristicStop". * * @param heuristicStop the heuristic stop to use */ public void setHeuristicStop(int heuristicStop){ m_heuristicStop = heuristicStop; } /** * Sets the option "weightTrimBeta". */ public void setWeightTrimBeta(double w){ m_weightTrimBeta = w; } /** * Set the value of useAIC. * * @param c Value to assign to useAIC. */ public void setUseAIC(boolean c){ m_useAIC = c; } /** * Returns the maxIterations parameter. * * @return the maximum iteration */ public int getMaxIterations(){ return m_maxIterations; } /** * Returns an array holding the coefficients of the logistic model. * First dimension is the class, the second one holds a list of coefficients. * At position zero, the constant term of the model is stored, then, the coefficients for * the attributes in ascending order. * @return the array of coefficients */ protected double[][] getCoefficients(){ double[][] coefficients = new double[m_numClasses][m_numericDataHeader.numAttributes() + 1]; for (int j = 0; j < m_numClasses; j++) { //go through simple regression functions and add their coefficient to the coefficient of //the attribute they are built on. for (int i = 0; i < m_numRegressions; i++) { double slope = m_regressions[j][i].getSlope(); double intercept = m_regressions[j][i].getIntercept(); int attribute = m_regressions[j][i].getAttributeIndex(); coefficients[j][0] += intercept; coefficients[j][attribute + 1] += slope; } } // Need to multiply all coefficients by (J-1) / J for (int j = 0; j < coefficients.length; j++) { for (int i = 0; i < coefficients[0].length; i++) { coefficients[j][i] *= (double)(m_numClasses - 1) / (double)m_numClasses; } } return coefficients; } /** * Returns the fraction of all attributes in the data that are used in the * logistic model (in percent). * An attribute is used in the model if it is used in any of the models for * the different classes. * * @return the fraction of all attributes that are used */ public double percentAttributesUsed(){ boolean[] attributes = new boolean[m_numericDataHeader.numAttributes()]; double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++){ for (int i = 1; i < m_numericDataHeader.numAttributes() + 1; i++) { //attribute used if it is used in any class, note coefficients are shifted by one (because //of constant term). if (!Utils.eq(coefficients[j][i],0)) attributes[i - 1] = true; } } //count number of used attributes (without the class attribute) double count = 0; for (int i = 0; i < attributes.length; i++) if (attributes[i]) count++; return count / (double)(m_numericDataHeader.numAttributes() - 1) * 100.0; } /** * Returns a description of the logistic model (i.e., attributes and * coefficients). * * @return the description of the model */ public String toString(){ StringBuffer s = new StringBuffer(); //get used attributes int[][] attributes = getUsedAttributes(); //get coefficients double[][] coefficients = getCoefficients(); for (int j = 0; j < m_numClasses; j++) { s.append("\nClass "+j+" :\n"); //constant term s.append(Utils.doubleToString(coefficients[j][0],4,2)+" + \n"); for (int i = 0; i < attributes[j].length; i++) { //attribute/coefficient pairs s.append("["+m_numericDataHeader.attribute(attributes[j][i]).name()+"]"); s.append(" * " + Utils.doubleToString(coefficients[j][attributes[j][i]+1],4,2)); if (i != attributes[j].length - 1) s.append(" +"); s.append("\n"); } } return new String(s); } /** * Returns class probabilities for an instance. * * @param instance the instance to compute the distribution for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public double[] distributionForInstance(Instance instance) throws Exception { instance = (Instance)instance.copy(); //set to numeric pseudo-class instance.setDataset(m_numericDataHeader); //calculate probs via Fs return probs(getFs(instance)); } /** * Cleanup in order to save memory. */ public void cleanup() { //save just header info m_train = new Instances(m_train,0); m_numericData = null; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.9 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy