All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.RandomizableClusterer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * RandomizableClusterer.java
 * Copyright (C) 2006 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.clusterers;

import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Randomizable;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Vector;

/**
 * Abstract utility class for handling settings common to randomizable
 * clusterers.
 *
 * @author FracPete (fracpete at waikato dot ac dot nz)
 * @version $Revision: 1.3 $
 */
public abstract class RandomizableClusterer
  extends AbstractClusterer
  implements OptionHandler, Randomizable {

  /** for serialization */
  private static final long serialVersionUID = -4819590778152242745L;
  
  /** the default seed value */
  protected int m_SeedDefault = 1;
  
  /** The random number seed. */
  protected int m_Seed = m_SeedDefault;

  /**
   * Returns an enumeration describing the available options.
   *
   * @return 		an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector result = new Vector();

    result.addElement(new Option(
	"\tRandom number seed.\n"
	+ "\t(default " + m_SeedDefault + ")",
	"S", 1, "-S "));

    return result.elements();
  }

  /**
   * Parses a given list of options. Valid options are:

* * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) setSeed(Integer.parseInt(tmpStr)); else setSeed(m_SeedDefault); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); result.add("-S"); result.add("" + getSeed()); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The random number seed to be used."; } /** * Set the seed for random number generation. * * @param value the seed to use */ public void setSeed(int value) { m_Seed = value; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_Seed; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy