weka.clusterers.sIB Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* sIB.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
*
*/
package weka.clusterers;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.Matrix;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
/**
* Cluster data using the sequential information bottleneck algorithm.
*
* Note: only hard clustering scheme is supported. sIB assign for each instance the cluster that have the minimum cost/distance to the instance. The trade-off beta is set to infinite so 1/beta is zero.
*
* For more information, see:
*
* Noam Slonim, Nir Friedman, Naftali Tishby: Unsupervised document classification using sequential information maximization. In: Proceedings of the 25th International ACM SIGIR Conference on Research and Development in Information Retrieval, 129-136, 2002.
*
*
* BibTeX:
*
* @inproceedings{Slonim2002,
* author = {Noam Slonim and Nir Friedman and Naftali Tishby},
* booktitle = {Proceedings of the 25th International ACM SIGIR Conference on Research and Development in Information Retrieval},
* pages = {129-136},
* title = {Unsupervised document classification using sequential information maximization},
* year = {2002}
* }
*
*
*
* Valid options are:
*
* -I <num>
* maximum number of iterations
* (default 100).
*
* -M <num>
* minimum number of changes in a single iteration
* (default 0).
*
* -N <num>
* number of clusters.
* (default 2).
*
* -R <num>
* number of restarts.
* (default 5).
*
* -U
* set not to normalize the data
* (default true).
*
* -V
* set to output debug info
* (default false).
*
* -S <num>
* Random number seed.
* (default 1)
*
*
* @author Noam Slonim
* @author Anna Huang
* @version $Revision: 5538 $
*/
public class sIB
extends RandomizableClusterer
implements TechnicalInformationHandler {
/** for serialization. */
private static final long serialVersionUID = -8652125897352654213L;
/**
* Inner class handling status of the input data
*
* @see Serializable
*/
private class Input
implements Serializable, RevisionHandler {
/** for serialization */
static final long serialVersionUID = -2464453171263384037L;
/** Prior probability of each instance */
private double[] Px;
/** Prior probability of each attribute */
private double[] Py;
/** Joint distribution of attribute and instance */
private Matrix Pyx;
/** P[y|x] */
private Matrix Py_x;
/** Mutual information between the instances and the attributes */
private double Ixy;
/** Entropy of the attributes */
private double Hy;
/** Entropy of the instances */
private double Hx;
/** Sum values of the dataset */
private double sumVals;
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5538 $");
}
}
/**
* Internal class handling the whole partition
*
* @see Serializable
*/
private class Partition
implements Serializable, RevisionHandler {
/** for serialization */
static final long serialVersionUID = 4957194978951259946L;
/** Cluster assignment for each instance */
private int[] Pt_x;
/** Prior probability of each cluster */
private double[] Pt;
/** sIB equation score, to evaluate the quality of the partition */
private double L;
/** Number of changes during the generation of this partition */
private int counter;
/** Attribute probablities for each cluster */
private Matrix Py_t;
/**
* Create a new empty Partition
instance.
*/
public Partition() {
Pt_x = new int[m_numInstances];
for (int i = 0; i < m_numInstances; i++) {
Pt_x[i] = -1;
}
Pt = new double[m_numCluster];
Py_t = new Matrix(m_numAttributes, m_numCluster);
counter = 0;
}
/**
* Find all the instances that have been assigned to cluster i
* @param i index of the cluster
* @return an arraylist of the instance ids that have been assigned to cluster i
*/
private ArrayList find(int i) {
ArrayList indices = new ArrayList();
for (int x = 0; x < Pt_x.length; x++) {
if (Pt_x[x] == i) {
indices.add(x);
}
}
return indices;
}
/**
* Find the size of the cluster i
* @param i index of the cluster
* @return the size of cluster i
*/
private int size(int i) {
int count = 0;
for (int x = 0; x < Pt_x.length; x++) {
if (Pt_x[x] == i) {
count++;
}
}
return count;
}
/**
* Copy the current partition into T
* @param T the target partition object
*/
private void copy(Partition T) {
if (T == null) {
T = new Partition();
}
System.arraycopy(Pt_x, 0, T.Pt_x, 0, Pt_x.length);
System.arraycopy(Pt, 0, T.Pt, 0, Pt.length);
T.L = L;
T.counter = counter;
double[][] mArray = Py_t.getArray();
double[][] tgtArray = T.Py_t.getArray();
for (int i = 0; i < mArray.length; i++) {
System.arraycopy(mArray[i], 0, tgtArray[i], 0, mArray[0].length);
}
}
/**
* Output the current partition
* @param insts
* @return a string that describes the partition
*/
public String toString() {
StringBuffer text = new StringBuffer();
text.append("score (L) : " + Utils.doubleToString(L, 4) + "\n");
text.append("number of changes : " + counter +"\n");
for (int i = 0; i < m_numCluster; i++) {
text.append("\nCluster "+i+"\n");
text.append("size : "+size(i)+"\n");
text.append("prior prob : "+Utils.doubleToString(Pt[i], 4)+"\n");
}
return text.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 5538 $");
}
}
/** Training data */
private Instances m_data;
/** Number of clusters */
private int m_numCluster = 2;
/** Number of restarts */
private int m_numRestarts = 5;
/** Verbose? */
private boolean m_verbose = false;
/** Uniform prior probability of the documents */
private boolean m_uniformPrior = true;
/** Max number of iterations during each restart */
private int m_maxLoop = 100;
/** Minimum number of changes */
private int m_minChange = 0;
/** Globally replace missing values */
private ReplaceMissingValues m_replaceMissing;
/** Number of instances */
private int m_numInstances;
/** Number of attributes */
private int m_numAttributes;
/** Randomly generate initial partition */
private Random random;
/** Holds the best partition built */
private Partition bestT;
/** Holds the statistics about the input dataset */
private Input input;
/**
* Generates a clusterer.
*
* @param data the training instances
* @throws Exception if something goes wrong
*/
public void buildClusterer(Instances data) throws Exception {
// can clusterer handle the data ?
getCapabilities().testWithFail(data);
m_replaceMissing = new ReplaceMissingValues();
Instances instances = new Instances(data);
instances.setClassIndex(-1);
m_replaceMissing.setInputFormat(instances);
data = weka.filters.Filter.useFilter(instances, m_replaceMissing);
instances = null;
// initialize all fields that are not being set via options
m_data = data;
m_numInstances = m_data.numInstances();
m_numAttributes = m_data.numAttributes();
random = new Random(getSeed());
// initialize the statistics of the input training data
input = sIB_ProcessInput();
// object to hold the best partition
bestT = new Partition();
// the real clustering
double bestL = Double.NEGATIVE_INFINITY;
for (int k = 0; k < m_numRestarts; k++) {
if(m_verbose) {
System.out.format("restart number %s...\n", k);
}
// initialize the partition and optimize it
Partition tmpT = sIB_InitT(input);
tmpT = sIB_OptimizeT(tmpT, input);
// if a better partition is found, save it
if (tmpT.L > bestL) {
tmpT.copy(bestT);
bestL = bestT.L;
}
if(m_verbose) {
System.out.println("\nPartition status : ");
System.out.println("------------------");
System.out.println(tmpT.toString()+"\n");
}
}
if(m_verbose){
System.out.println("\nBest Partition");
System.out.println("===============");
System.out.println(bestT.toString());
}
// save memory
m_data = new Instances(m_data, 0);
}
/**
* Cluster a given instance, this is the method defined in Clusterer
* interface do nothing but just return the cluster assigned to it
*/
public int clusterInstance(Instance instance) throws Exception {
double prior = (double) 1 / input.sumVals;
double[] distances = new double[m_numCluster];
for(int i = 0; i < m_numCluster; i++){
double Pnew = bestT.Pt[i] + prior;
double pi1 = prior / Pnew;
double pi2 = bestT.Pt[i] / Pnew;
distances[i] = Pnew * JS(instance, i, pi1, pi2);
}
return Utils.minIndex(distances);
}
/**
* Process the input and compute the statistics of the training data
* @return an Input object which holds the statistics about the training data
*/
private Input sIB_ProcessInput() {
double valSum = 0.0;
for (int i = 0; i < m_numInstances; i++) {
valSum = 0.0;
for (int v = 0; v < m_data.instance(i).numValues(); v++) {
valSum += m_data.instance(i).valueSparse(v);
}
if (valSum <= 0) {
if(m_verbose){
System.out.format("Instance %s sum of value = %s <= 0, removed.\n", i, valSum);
}
m_data.delete(i);
m_numInstances--;
}
}
// get the term-document matrix
Input input = new Input();
input.Py_x = getTransposedNormedMatrix(m_data);
if (m_uniformPrior) {
input.Pyx = input.Py_x.copy();
normalizePrior(m_data);
}
else {
input.Pyx = getTransposedMatrix(m_data);
}
input.sumVals = getTotalSum(m_data);
input.Pyx.timesEquals((double) 1 / input.sumVals);
// prior probability of documents, ie. sum the columns from the Pyx matrix
input.Px = new double[m_numInstances];
for (int i = 0; i < m_numInstances; i++) {
for (int j = 0; j < m_numAttributes; j++) {
input.Px[i] += input.Pyx.get(j, i);
}
}
// prior probability of terms, ie. sum the rows from the Pyx matrix
input.Py = new double[m_numAttributes];
for (int i = 0; i < input.Pyx.getRowDimension(); i++) {
for (int j = 0; j < input.Pyx.getColumnDimension(); j++) {
input.Py[i] += input.Pyx.get(i, j);
}
}
MI(input.Pyx, input);
return input;
}
/**
* Initialize the partition
* @param input object holding the statistics of the training data
* @return the initialized partition
*/
private Partition sIB_InitT(Input input) {
Partition T = new Partition();
int avgSize = (int) Math.ceil((double) m_numInstances / m_numCluster);
ArrayList permInstsIdx = new ArrayList();
ArrayList unassigned = new ArrayList();
for (int i = 0; i < m_numInstances; i++) {
unassigned.add(i);
}
while (unassigned.size() != 0) {
int t = random.nextInt(unassigned.size());
permInstsIdx.add(unassigned.get(t));
unassigned.remove(t);
}
for (int i = 0; i < m_numCluster; i++) {
int r2 = avgSize > permInstsIdx.size() ? permInstsIdx.size() : avgSize;
for (int j = 0; j < r2; j++) {
T.Pt_x[permInstsIdx.get(j)] = i;
}
for (int j = 0; j < r2; j++) {
permInstsIdx.remove(0);
}
}
// initialize the prior prob of each cluster, and the probability
// for each attribute within the cluster
for (int i = 0; i < m_numCluster; i++) {
ArrayList indices = T.find(i);
for (int j = 0; j < indices.size(); j++) {
T.Pt[i] += input.Px[indices.get(j)];
}
double[][] mArray = input.Pyx.getArray();
for (int j = 0; j < m_numAttributes; j++) {
double sum = 0.0;
for (int k = 0; k < indices.size(); k++) {
sum += mArray[j][indices.get(k)];
}
sum /= T.Pt[i];
T.Py_t.set(j, i, sum);
}
}
if(m_verbose) {
System.out.println("Initializing...");
}
return T;
}
/**
* Optimize the partition
* @param tmpT partition to be optimized
* @param input object describing the statistics of the training dataset
* @return the optimized partition
*/
private Partition sIB_OptimizeT(Partition tmpT, Input input) {
boolean done = false;
int change = 0, loopCounter = 0;
if(m_verbose) {
System.out.println("Optimizing...");
System.out.println("-------------");
}
while (!done) {
change = 0;
for (int i = 0; i < m_numInstances; i++) {
int old_t = tmpT.Pt_x[i];
// If the current cluster only has one instance left, leave it.
if (tmpT.size(old_t) == 1) {
if(m_verbose){
System.out.format("cluster %s has only 1 doc remain\n", old_t);
}
continue;
}
// draw the instance out from its previous cluster
reduce_x(i, old_t, tmpT, input);
// re-cluster the instance
int new_t = clusterInstance(i, input, tmpT);
if (new_t != old_t) {
change++;
updateAssignment(i, new_t, tmpT, input.Px[i], input.Py_x);
}
}
tmpT.counter += change;
if(m_verbose){
System.out.format("iteration %s , changes : %s\n", loopCounter, change);
}
done = checkConvergence(change, loopCounter);
loopCounter++;
}
// compute the sIB score
tmpT.L = sIB_local_MI(tmpT.Py_t, tmpT.Pt);
if(m_verbose){
System.out.format("score (L) : %s \n", Utils.doubleToString(tmpT.L, 4));
}
return tmpT;
}
/**
* Draw a instance out from a cluster.
* @param instIdx index of the instance to be drawn out
* @param t index of the cluster which the instance previously belong to
* @param T the current working partition
* @param input the input statistics
*/
private void reduce_x(int instIdx, int t, Partition T, Input input) {
// Update the prior probability of the cluster
ArrayList indices = T.find(t);
double sum = 0.0;
for (int i = 0; i < indices.size(); i++) {
if (indices.get(i) == instIdx)
continue;
sum += input.Px[indices.get(i)];
}
T.Pt[t] = sum;
if (T.Pt[t] < 0) {
System.out.format("Warning: probability < 0 (%s)\n", T.Pt[t]);
T.Pt[t] = 0;
}
// Update prob of each attribute in the cluster
double[][] mArray = input.Pyx.getArray();
for (int i = 0; i < m_numAttributes; i++) {
sum = 0.0;
for (int j = 0; j < indices.size(); j++) {
if (indices.get(j) == instIdx)
continue;
sum += mArray[i][indices.get(j)];
}
T.Py_t.set(i, t, sum / T.Pt[t]);
}
}
/**
* Put an instance into a new cluster and update.
* @param instIdx instance to be updated
* @param newt index of the new cluster this instance has been assigned to
* @param T the current working partition
* @param Px an array of prior probabilities of the instances
*/
private void updateAssignment(int instIdx, int newt, Partition T, double Px, Matrix Py_x) {
T.Pt_x[instIdx] = newt;
// update probability of attributes in the cluster
double mass = Px + T.Pt[newt];
double pi1 = Px / mass;
double pi2 = T.Pt[newt] / mass;
for (int i = 0; i < m_numAttributes; i++) {
T.Py_t.set(i, newt, pi1 * Py_x.get(i, instIdx) + pi2 * T.Py_t.get(i, newt));
}
T.Pt[newt] = mass;
}
/**
* Check whether the current iteration is converged
* @param change number of changes in current iteration
* @param loops number of iterations done
* @return true if the iteration is converged, false otherwise
*/
private boolean checkConvergence(int change, int loops) {
if (change <= m_minChange || loops >= m_maxLoop) {
if(m_verbose){
System.out.format("\nsIB converged after %s iterations with %s changes\n", loops,
change);
}
return true;
}
return false;
}
/**
* Cluster an instance into the nearest cluster.
* @param instIdx Index of the instance to be clustered
* @param input Object which describe the statistics of the training dataset
* @param T Partition
* @return index of the cluster that has the minimum distance to the instance
*/
private int clusterInstance(int instIdx, Input input, Partition T) {
double[] distances = new double[m_numCluster];
for (int i = 0; i < m_numCluster; i++) {
double Pnew = input.Px[instIdx] + T.Pt[i];
double pi1 = input.Px[instIdx] / Pnew;
double pi2 = T.Pt[i] / Pnew;
distances[i] = Pnew * JS(instIdx, input, T, i, pi1, pi2);
}
return Utils.minIndex(distances);
}
/**
* Compute the JS divergence between an instance and a cluster, used for training data
* @param instIdx index of the instance
* @param input statistics of the input data
* @param T the whole partition
* @param t index of the cluster
* @param pi1
* @param pi2
* @return the JS divergence
*/
private double JS(int instIdx, Input input, Partition T, int t, double pi1, double pi2) {
if (Math.min(pi1, pi2) <= 0) {
System.out.format("Warning: zero or negative weights in JS calculation! (pi1 %s, pi2 %s)\n", pi1, pi2);
return 0;
}
Instance inst = m_data.instance(instIdx);
double kl1 = 0.0, kl2 = 0.0, tmp = 0.0;
for (int i = 0; i < inst.numValues(); i++) {
tmp = input.Py_x.get(inst.index(i), instIdx);
if(tmp != 0) {
kl1 += tmp * Math.log(tmp / (tmp * pi1 + pi2 * T.Py_t.get(inst.index(i), t)));
}
}
for (int i = 0; i < m_numAttributes; i++) {
if ((tmp = T.Py_t.get(i, t)) != 0) {
kl2 += tmp * Math.log(tmp / (input.Py_x.get(i, instIdx) * pi1 + pi2 * tmp));
}
}
return pi1 * kl1 + pi2 * kl2;
}
/**
* Compute the JS divergence between an instance and a cluster, used for test data
* @param inst instance to be clustered
* @param t index of the cluster
* @param pi1
* @param pi2
* @return the JS divergence
*/
private double JS(Instance inst, int t, double pi1, double pi2) {
if (Math.min(pi1, pi2) <= 0) {
System.out.format("Warning: zero or negative weights in JS calculation! (pi1 %s, pi2 %s)\n", pi1, pi2);
return 0;
}
double sum = Utils.sum(inst.toDoubleArray());
double kl1 = 0.0, kl2 = 0.0, tmp = 0.0;
for (int i = 0; i < inst.numValues(); i++) {
tmp = inst.valueSparse(i) / sum;
if(tmp != 0) {
kl1 += tmp * Math.log(tmp / (tmp * pi1 + pi2 * bestT.Py_t.get(inst.index(i), t)));
}
}
for (int i = 0; i < m_numAttributes; i++) {
if ((tmp = bestT.Py_t.get(i, t)) != 0) {
kl2 += tmp * Math.log(tmp / (inst.value(i) * pi1 / sum + pi2 * tmp));
}
}
return pi1 * kl1 + pi2 * kl2;
}
/**
* Compute the sIB score
* @param m a term-cluster matrix, with m[i, j] is the probability of term i given cluster j
* @param Pt an array of cluster prior probabilities
* @return the sIB score which indicates the quality of the partition
*/
private double sIB_local_MI(Matrix m, double[] Pt) {
double Hy = 0.0, Ht = 0.0;
for (int i = 0; i < Pt.length; i++) {
Ht += Pt[i] * Math.log(Pt[i]);
}
Ht = -Ht;
for (int i = 0; i < m_numAttributes; i++) {
double Py = 0.0;
for (int j = 0; j < m_numCluster; j++) {
Py += m.get(i, j) * Pt[j];
}
if(Py == 0) continue;
Hy += Py * Math.log(Py);
}
Hy = -Hy;
double Hyt = 0.0, tmp = 0.0;
for (int i = 0; i < m.getRowDimension(); i++) {
for (int j = 0; j < m.getColumnDimension(); j++) {
if ((tmp = m.get(i, j)) == 0 || Pt[j] == 0) {
continue;
}
tmp *= Pt[j];
Hyt += tmp * Math.log(tmp);
}
}
return Hy + Ht + Hyt;
}
/**
* Get the sum of value of the dataset
* @param data set of instances to handle
* @return sum of all the attribute values for all the instances in the dataset
*/
private double getTotalSum(Instances data) {
double sum = 0.0;
for (int i = 0; i < data.numInstances(); i++) {
for (int v = 0; v < data.instance(i).numValues(); v++) {
sum += data.instance(i).valueSparse(v);
}
}
return sum;
}
/**
* Transpose the document-term matrix to term-document matrix
* @param data instances with document-term info
* @return a term-document matrix transposed from the input dataset
*/
private Matrix getTransposedMatrix(Instances data) {
double[][] temp = new double[data.numAttributes()][data.numInstances()];
for (int i = 0; i < data.numInstances(); i++) {
Instance inst = data.instance(i);
for (int v = 0; v < inst.numValues(); v++) {
temp[inst.index(v)][i] = inst.valueSparse(v);
}
}
Matrix My_x = new Matrix(temp);
return My_x;
}
/**
* Normalize the document vectors
* @param data instances to be normalized
*/
private void normalizePrior(Instances data) {
for (int i = 0; i < data.numInstances(); i++) {
normalizeInstance(data.instance(i));
}
}
/**
* Normalize the instance
* @param inst instance to be normalized
* @return a new Instance with normalized values
*/
private Instance normalizeInstance(Instance inst) {
double[] vals = inst.toDoubleArray();
double sum = Utils.sum(vals);
for(int i = 0; i < vals.length; i++) {
vals[i] /= sum;
}
return new Instance(inst.weight(), vals);
}
private Matrix getTransposedNormedMatrix(Instances data) {
Matrix matrix = new Matrix(data.numAttributes(), data.numInstances());
for(int i = 0; i < data.numInstances(); i++){
double[] vals = data.instance(i).toDoubleArray();
double sum = Utils.sum(vals);
for (int v = 0; v < vals.length; v++) {
vals[v] /= sum;
matrix.set(v, i, vals[v]);
}
}
return matrix;
}
/**
* Compute the MI between instances and attributes
* @param m the term-document matrix
* @param input object that describes the statistics about the training data
*/
private void MI(Matrix m, Input input){
int minDimSize = m.getColumnDimension() < m.getRowDimension() ? m.getColumnDimension() : m.getRowDimension();
if(minDimSize < 2){
System.err.println("Warning : This is not a JOINT distribution");
input.Hx = Entropy (m);
input.Hy = 0;
input.Ixy = 0;
return;
}
input.Hx = Entropy(input.Px);
input.Hy = Entropy(input.Py);
double entropy = input.Hx + input.Hy;
for (int i=0; i < m_numInstances; i++) {
Instance inst = m_data.instance(i);
for (int v = 0; v < inst.numValues(); v++) {
double tmp = m.get(inst.index(v), i);
if(tmp <= 0) continue;
entropy += tmp * Math.log(tmp);
}
}
input.Ixy = entropy;
if(m_verbose) {
System.out.println("Ixy = " + input.Ixy);
}
}
/**
* Compute the entropy score based on an array of probabilities
* @param probs array of non-negative and normalized probabilities
* @return the entropy value
*/
private double Entropy(double[] probs){
for (int i = 0; i < probs.length; i++){
if (probs[i] <= 0) {
if(m_verbose) {
System.out.println("Warning: Negative probability.");
}
return Double.NaN;
}
}
// could be unormalized, when normalization is not specified
if(Math.abs(Utils.sum(probs)-1) >= 1e-6) {
if(m_verbose) {
System.out.println("Warning: Not normalized.");
}
return Double.NaN;
}
double mi = 0.0;
for (int i = 0; i < probs.length; i++) {
mi += probs[i] * Math.log(probs[i]);
}
mi = -mi;
return mi;
}
/**
* Compute the entropy score based on a matrix
* @param p a matrix with non-negative and normalized probabilities
* @return the entropy value
*/
private double Entropy(Matrix p) {
double mi = 0;
for (int i = 0; i < p.getRowDimension(); i++) {
for (int j = 0; j < p.getColumnDimension(); j++) {
if(p.get(i, j) == 0){
continue;
}
mi += p.get(i, j) + Math.log(p.get(i, j));
}
}
mi = -mi;
return mi;
}
/**
* Parses a given list of options.
*
* Valid options are:
*
* -I <num>
* maximum number of iterations
* (default 100).
*
* -M <num>
* minimum number of changes in a single iteration
* (default 0).
*
* -N <num>
* number of clusters.
* (default 2).
*
* -R <num>
* number of restarts.
* (default 5).
*
* -U
* set not to normalize the data
* (default true).
*
* -V
* set to output debug info
* (default false).
*
* -S <num>
* Random number seed.
* (default 1)
*
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String optionString = Utils.getOption('I', options);
if (optionString.length() != 0) {
setMaxIterations(Integer.parseInt(optionString));
}
optionString = Utils.getOption('M', options);
if (optionString.length() != 0) {
setMinChange((new Integer(optionString)).intValue());
}
optionString = Utils.getOption('N', options);
if (optionString.length() != 0) {
setNumClusters(Integer.parseInt(optionString));
}
optionString = Utils.getOption('R', options);
if (optionString.length() != 0) {
setNumRestarts((new Integer(optionString)).intValue());
}
setNotUnifyNorm(Utils.getFlag('U', options));
setDebug(Utils.getFlag('V', options));
super.setOptions(options);
}
/**
* Returns an enumeration describing the available options.
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector
© 2015 - 2025 Weber Informatics LLC | Privacy Policy