All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.ResultMatrix Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * ResultMatrix.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import weka.core.RevisionHandler;
import weka.core.Utils;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/**
 * This matrix is a container for the datasets and classifier setups and 
 * their statistics. Derived classes output the data in different formats.
 * Derived classes need to implement the following methods:
 * 
    *
  • toStringMatrix()
  • *
  • toStringKey()
  • *
  • toStringHeader()
  • *
  • toStringSummary()
  • *
  • toStringRanking()
  • *
* * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.9 $ * @see #toStringMatrix() * @see #toStringKey() * @see #toStringHeader() * @see #toStringSummary() * @see #toStringRanking() */ public abstract class ResultMatrix implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = 4487179306428209739L; /** tie */ public final static int SIGNIFICANCE_TIE = 0; /** win */ public final static int SIGNIFICANCE_WIN = 1; /** loss */ public final static int SIGNIFICANCE_LOSS = 2; /** tie string */ public String TIE_STRING = " "; /** win string */ public String WIN_STRING = "v"; /** loss string */ public String LOSS_STRING = "*"; /** the left parentheses for enumerating cols/rows */ public String LEFT_PARENTHESES = "("; /** the right parentheses for enumerating cols/rows */ public String RIGHT_PARENTHESES = ")"; /** the column names */ protected String[] m_ColNames = null; /** the row names */ protected String[] m_RowNames = null; /** whether a column is hidden */ protected boolean[] m_ColHidden = null; /** whether a row is hidden */ protected boolean[] m_RowHidden = null; /** the significance */ protected int[][] m_Significance = null; /** the values */ protected double[][] m_Mean = null; /** the standard deviation */ protected double[][] m_StdDev = null; /** the counts for the different datasets */ protected double[] m_Counts = null; /** the standard mean precision */ protected int m_MeanPrec; /** the standard std. deviation preicision */ protected int m_StdDevPrec; /** whether std. deviations are printed as well */ protected boolean m_ShowStdDev; /** whether the average for each column should be printed */ protected boolean m_ShowAverage; /** whether the names or numbers are output as column declarations */ protected boolean m_PrintColNames; /** whether the names or numbers are output as row declarations */ protected boolean m_PrintRowNames; /** whether a "(x)" is printed before each column name with "x" as the * index */ protected boolean m_EnumerateColNames; /** whether a "(x)" is printed before each row name with "x" as the index */ protected boolean m_EnumerateRowNames; /** the size of the names of the columns */ protected int m_ColNameWidth; /** the size of the names of the rows */ protected int m_RowNameWidth; /** the size of the mean columns */ protected int m_MeanWidth; /** the size of the std dev columns */ protected int m_StdDevWidth; /** the size of the significance columns */ protected int m_SignificanceWidth; /** the size of the counts */ protected int m_CountWidth; /** contains the keys for the header */ protected Vector m_HeaderKeys = null; /** contains the values for the header */ protected Vector m_HeaderValues = null; /** the non-significant wins */ protected int[][] m_NonSigWins = null; /** the significant wins */ protected int[][] m_Wins = null; /** the wins in ranking */ protected int[] m_RankingWins = null; /** the losses in ranking */ protected int[] m_RankingLosses = null; /** the difference between wins and losses */ protected int[] m_RankingDiff = null; /** the ordering of the rows */ protected int[] m_RowOrder = null; /** the ordering of the columns */ protected int[] m_ColOrder = null; /** whether to remove the filter name from the dataaset name */ protected boolean m_RemoveFilterName = false; /** * initializes the matrix as 1x1 matrix */ public ResultMatrix() { this(1, 1); } /** * initializes the matrix with the given dimensions */ public ResultMatrix(int cols, int rows) { setSize(cols, rows); clear(); } /** * initializes the matrix with the values from the given matrix * @param matrix the matrix to get the values from */ public ResultMatrix(ResultMatrix matrix) { assign(matrix); } /** * returns the name of the output format */ public abstract String getDisplayName(); /** * acquires the data from the given matrix */ public void assign(ResultMatrix matrix) { int i; int n; setSize(matrix.getColCount(), matrix.getRowCount()); // output parameters TIE_STRING = matrix.TIE_STRING; WIN_STRING = matrix.WIN_STRING; LOSS_STRING = matrix.LOSS_STRING; LEFT_PARENTHESES = matrix.LEFT_PARENTHESES; RIGHT_PARENTHESES = matrix.RIGHT_PARENTHESES; m_MeanPrec = matrix.m_MeanPrec; m_StdDevPrec = matrix.m_StdDevPrec; m_ShowStdDev = matrix.m_ShowStdDev; m_ShowAverage = matrix.m_ShowAverage; m_PrintColNames = matrix.m_PrintColNames; m_PrintRowNames = matrix.m_PrintRowNames; m_EnumerateColNames = matrix.m_EnumerateColNames; m_EnumerateRowNames = matrix.m_EnumerateRowNames; m_RowNameWidth = matrix.m_RowNameWidth; m_MeanWidth = matrix.m_MeanWidth; m_StdDevWidth = matrix.m_StdDevWidth; m_SignificanceWidth = matrix.m_SignificanceWidth; m_CountWidth = matrix.m_CountWidth; m_RemoveFilterName = matrix.m_RemoveFilterName; // header m_HeaderKeys = (Vector) matrix.m_HeaderKeys.clone(); m_HeaderValues = (Vector) matrix.m_HeaderValues.clone(); // matrix for (i = 0; i < matrix.m_Mean.length; i++) { for (n = 0; n < matrix.m_Mean[i].length; n++) { m_Mean[i][n] = matrix.m_Mean[i][n]; m_StdDev[i][n] = matrix.m_StdDev[i][n]; m_Significance[i][n] = matrix.m_Significance[i][n]; } } for (i = 0; i < matrix.m_ColNames.length; i++) { m_ColNames[i] = matrix.m_ColNames[i]; m_ColHidden[i] = matrix.m_ColHidden[i]; } for (i = 0; i < matrix.m_RowNames.length; i++) { m_RowNames[i] = matrix.m_RowNames[i]; m_RowHidden[i] = matrix.m_RowHidden[i]; } for (i = 0; i < matrix.m_Counts.length; i++) m_Counts[i] = matrix.m_Counts[i]; // summary if (matrix.m_NonSigWins != null) { m_NonSigWins = new int[matrix.m_NonSigWins.length][]; m_Wins = new int[matrix.m_NonSigWins.length][]; for (i = 0; i < matrix.m_NonSigWins.length; i++) { m_NonSigWins[i] = new int[matrix.m_NonSigWins[i].length]; m_Wins[i] = new int[matrix.m_NonSigWins[i].length]; for (n = 0; n < matrix.m_NonSigWins[i].length; n++) { m_NonSigWins[i][n] = matrix.m_NonSigWins[i][n]; m_Wins[i][n] = matrix.m_Wins[i][n]; } } } // ranking if (matrix.m_RankingWins != null) { m_RankingWins = new int[matrix.m_RankingWins.length]; m_RankingLosses = new int[matrix.m_RankingWins.length]; m_RankingDiff = new int[matrix.m_RankingWins.length]; for (i = 0; i < matrix.m_RankingWins.length; i++) { m_RankingWins[i] = matrix.m_RankingWins[i]; m_RankingLosses[i] = matrix.m_RankingLosses[i]; m_RankingDiff[i] = matrix.m_RankingDiff[i]; } } } /** * removes the stored data and the ordering, but retains the dimensions of * the matrix */ public void clear() { m_MeanPrec = 2; m_StdDevPrec = 2; m_ShowStdDev = false; m_ShowAverage = false; m_PrintColNames = true; m_PrintRowNames = true; m_EnumerateColNames = true; m_EnumerateRowNames = false; m_RowNameWidth = 0; m_ColNameWidth = 0; m_MeanWidth = 0; m_StdDevWidth = 0; m_SignificanceWidth = 0; m_CountWidth = 0; setSize(getColCount(), getRowCount()); } /** * clears the content of the matrix and sets the new size * @param cols the number of mean columns * @param rows the number of mean rows */ public void setSize(int cols, int rows) { int i; int n; m_ColNames = new String[cols]; m_RowNames = new String[rows]; m_Counts = new double[rows]; m_ColHidden = new boolean[cols]; m_RowHidden = new boolean[rows]; m_Mean = new double[rows][cols]; m_Significance = new int[rows][cols]; m_StdDev = new double[rows][cols]; m_ColOrder = null; m_RowOrder = null; // NaN means that there exists no value! -> toArray() for (i = 0; i < m_Mean.length; i++) { for (n = 0; n < m_Mean[i].length; n++) m_Mean[i][n] = Double.NaN; } for (i = 0; i < m_ColNames.length; i++) m_ColNames[i] = "col" + i; for (i = 0; i < m_RowNames.length; i++) m_RowNames[i] = "row" + i; clearHeader(); clearSummary(); clearRanking(); } /** * sets the precision for the means */ public void setMeanPrec(int prec) { if (prec >= 0) m_MeanPrec = prec; } /** * returns the current precision for the means */ public int getMeanPrec() { return m_MeanPrec; } /** * sets the precision for the standard deviation */ public void setStdDevPrec(int prec) { if (prec >= 0) m_StdDevPrec = prec; } /** * returns the current standard deviation precision */ public int getStdDevPrec() { return m_StdDevPrec; } /** * sets the width for the column names (0 = optimal) */ public void setColNameWidth(int width) { if (width >= 0) m_ColNameWidth = width; } /** * returns the current width for the column names */ public int getColNameWidth() { return m_ColNameWidth; } /** * sets the width for the row names (0 = optimal) */ public void setRowNameWidth(int width) { if (width >= 0) m_RowNameWidth = width; } /** * returns the current width for the row names */ public int getRowNameWidth() { return m_RowNameWidth; } /** * sets the width for the mean (0 = optimal) */ public void setMeanWidth(int width) { if (width >= 0) m_MeanWidth = width; } /** * returns the current width for the mean */ public int getMeanWidth() { return m_MeanWidth; } /** * sets the width for the std dev (0 = optimal) */ public void setStdDevWidth(int width) { if (width >= 0) m_StdDevWidth = width; } /** * returns the current width for the std dev */ public int getStdDevWidth() { return m_StdDevWidth; } /** * sets the width for the significance (0 = optimal) */ public void setSignificanceWidth(int width) { if (width >= 0) m_SignificanceWidth = width; } /** * returns the current width for the significance */ public int getSignificanceWidth() { return m_SignificanceWidth; } /** * sets the width for the counts (0 = optimal) */ public void setCountWidth(int width) { if (width >= 0) m_CountWidth = width; } /** * returns the current width for the counts */ public int getCountWidth() { return m_CountWidth; } /** * sets whether to display the std deviations or not */ public void setShowStdDev(boolean show) { m_ShowStdDev = show; } /** * returns whether std deviations are displayed or not */ public boolean getShowStdDev() { return m_ShowStdDev; } /** * sets whether to display the average per column or not */ public void setShowAverage(boolean show) { m_ShowAverage = show; } /** * returns whether average per column is displayed or not */ public boolean getShowAverage() { return m_ShowAverage; } /** * sets whether to remove the filter classname from the dataset name */ public void setRemoveFilterName(boolean remove) { m_RemoveFilterName = remove; } /** * returns whether the filter classname is removed from the dataset name */ public boolean getRemoveFilterName() { return m_RemoveFilterName; } /** * sets whether the column names or numbers instead are printed. * deactivating automatically sets m_EnumerateColNames to TRUE. * @see #setEnumerateColNames(boolean) */ public void setPrintColNames(boolean print) { m_PrintColNames = print; if (!print) setEnumerateColNames(true); } /** * returns whether column names or numbers instead are printed */ public boolean getPrintColNames() { return m_PrintColNames; } /** * sets whether the row names or numbers instead are printed * deactivating automatically sets m_EnumerateColNames to TRUE. * @see #setEnumerateRowNames(boolean) */ public void setPrintRowNames(boolean print) { m_PrintRowNames = print; if (!print) setEnumerateRowNames(true); } /** * returns whether row names or numbers instead are printed */ public boolean getPrintRowNames() { return m_PrintRowNames; } /** * sets whether the column names are prefixed with "(x)" where "x" is * the index */ public void setEnumerateColNames(boolean enumerate) { m_EnumerateColNames = enumerate; } /** * returns whether column names or numbers instead are enumerateed */ public boolean getEnumerateColNames() { return m_EnumerateColNames; } /** * sets whether to the row names or numbers instead are enumerateed */ public void setEnumerateRowNames(boolean enumerate) { m_EnumerateRowNames = enumerate; } /** * returns whether row names or numbers instead are enumerateed */ public boolean getEnumerateRowNames() { return m_EnumerateRowNames; } /** * returns the number of columns */ public int getColCount() { return m_ColNames.length; } /** * returns the number of visible columns */ public int getVisibleColCount() { int cols; int i; cols = 0; for (i = 0; i < getColCount(); i++) { if (!getColHidden(i)) cols++; } return cols; } /** * returns the number of rows */ public int getRowCount() { return m_RowNames.length; } /** * returns the number of visible rows */ public int getVisibleRowCount() { int rows; int i; rows= 0; for (i = 0; i < getRowCount(); i++) { if (!getRowHidden(i)) rows++; } return rows; } /** * sets the name of the column (if the index is valid) * @param index the index of the column * @param name the name of the column */ public void setColName(int index, String name) { if ( (index >= 0) && (index < getColCount()) ) m_ColNames[index] = name; } /** * returns the name of the row, if the index is valid, otherwise null. * if getPrintColNames() is FALSE then an empty string is returned or if * getEnumerateColNames() is TRUE then the 1-based index surrounded by * parentheses. * @see #setPrintColNames(boolean) * @see #getPrintColNames() * @see #setEnumerateColNames(boolean) * @see #getEnumerateColNames() */ public String getColName(int index) { String result; result = null; if ( (index >= 0) && (index < getColCount()) ) { if (getPrintColNames()) result = m_ColNames[index]; else result = ""; if (getEnumerateColNames()) { result = LEFT_PARENTHESES + Integer.toString(index + 1) + RIGHT_PARENTHESES + " " + result; result = result.trim(); } } return result; } /** * sets the name of the row (if the index is valid) * @param index the index of the row * @param name the name of the row */ public void setRowName(int index, String name) { if ( (index >= 0) && (index < getRowCount()) ) m_RowNames[index] = name; } /** * returns the name of the row, if the index is valid, otherwise null. * if getPrintRowNames() is FALSE then an empty string is returned or if * getEnumerateRowNames() is TRUE then the 1-based index surrounded by * parentheses. * @see #setPrintRowNames(boolean) * @see #getPrintRowNames() * @see #setEnumerateRowNames(boolean) * @see #getEnumerateRowNames() */ public String getRowName(int index) { String result; result = null; if ( (index >= 0) && (index < getRowCount()) ) { if (getPrintRowNames()) result = m_RowNames[index]; else result = ""; if (getEnumerateRowNames()) { result = LEFT_PARENTHESES + Integer.toString(index + 1) + RIGHT_PARENTHESES + " " + result; result = result.trim(); } } return result; } /** * sets the hidden status of the column (if the index is valid) * @param index the index of the column * @param hidden the hidden status of the column */ public void setColHidden(int index, boolean hidden) { if ( (index >= 0) && (index < getColCount()) ) m_ColHidden[index] = hidden; } /** * returns the hidden status of the column, if the index is valid, otherwise * false */ public boolean getColHidden(int index) { if ( (index >= 0) && (index < getColCount()) ) return m_ColHidden[index]; else return false; } /** * sets the hidden status of the row (if the index is valid) * @param index the index of the row * @param hidden the hidden status of the row */ public void setRowHidden(int index, boolean hidden) { if ( (index >= 0) && (index < getRowCount()) ) m_RowHidden[index] = hidden; } /** * returns the hidden status of the row, if the index is valid, otherwise * false */ public boolean getRowHidden(int index) { if ( (index >= 0) && (index < getRowCount()) ) return m_RowHidden[index]; else return false; } /** * sets the count for the row (if the index is valid) * @param index the index of the row * @param count the count for the row */ public void setCount(int index, double count) { if ( (index >= 0) && (index < getRowCount()) ) m_Counts[index] = count; } /** * returns the count for the row. if the index is invalid then 0. * @param index the index of the row * @return the count for the row */ public double getCount(int index) { if ( (index >= 0) && (index < getRowCount()) ) return m_Counts[index]; else return 0; } /** * sets the mean at the given position (if the position is valid) * @param col the column of the mean * @param row the row of the mean * @param value the value of the mean */ public void setMean(int col, int row, double value) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) m_Mean[row][col] = value; } /** * returns the mean at the given position, if the position is valid, * otherwise 0 */ public double getMean(int col, int row) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) return m_Mean[row][col]; else return 0; } /** * returns the average of the mean at the given position, if the position is * valid, otherwise 0 */ public double getAverage(int col) { int i; double avg; int count; if ( (col >= 0) && (col < getColCount()) ) { avg = 0; count = 0; for (i = 0; i < getRowCount(); i++) { if (!Double.isNaN(getMean(col, i))) { avg += getMean(col, i); count++; } } return avg / (double) count; } else { return 0; } } /** * sets the std deviation at the given position (if the position is valid) * @param col the column of the std. deviation * @param row the row of the std deviation * @param value the value of the std deviation */ public void setStdDev(int col, int row, double value) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) m_StdDev[row][col] = value; } /** * returns the std deviation at the given position, if the position is valid, * otherwise 0 */ public double getStdDev(int col, int row) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) return m_StdDev[row][col]; else return 0; } /** * sets the significance at the given position (if the position is valid) * @param col the column of the significance * @param row the row of the significance * @param value the value of the significance */ public void setSignificance(int col, int row, int value) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) m_Significance[row][col] = value; } /** * returns the significance at the given position, if the position is valid, * otherwise SIGNIFICANCE_ATIE */ public int getSignificance(int col, int row) { if ( (col >= 0) && (col < getColCount()) && (row >= 0) && (row < getRowCount()) ) return m_Significance[row][col]; else return SIGNIFICANCE_TIE; } /** * counts the occurrences of the given significance type in the given * column. * @param col the columnn to gather the information from * @param type the significance type, WIN/TIE/LOSS */ public int getSignificanceCount(int col, int type) { int result; int i; result = 0; if ( (col >= 0) && (col < getColCount()) ) { for (i = 0; i < getRowCount(); i++) { if (getRowHidden(i)) continue; // no value? if (Double.isNaN(getMean(col, i))) continue; if (getSignificance(col, i) == type) result++; } } return result; } /** * sets the ordering of the rows, null means default * @param order the new order of the rows */ public void setRowOrder(int[] order) { int i; // default order? if (order == null) { m_RowOrder = null; } else { if (order.length == getRowCount()) { m_RowOrder = new int[order.length]; for (i = 0; i < order.length; i++) m_RowOrder[i] = order[i]; } else { System.err.println("setRowOrder: length does not match (" + order.length + " <> " + getRowCount() + ") - ignored!"); } } } /** * returns the current order of the rows, null means the default order * @return the current order of the rows */ public int[] getRowOrder() { return m_RowOrder; } /** * returns the displayed index of the given row, depending on the order of * rows, returns -1 if index out of bounds * @param index the row to get the displayed index for * @return the real index of the row */ public int getDisplayRow(int index) { if ( (index >= 0) && (index < getRowCount()) ) { if (getRowOrder() == null) return index; else return getRowOrder()[index]; } else { return -1; } } /** * sets the ordering of the columns, null means default * @param order the new order of the columns */ public void setColOrder(int[] order) { int i; // default order? if (order == null) { m_ColOrder = null; } else { if (order.length == getColCount()) { m_ColOrder = new int[order.length]; for (i = 0; i < order.length; i++) m_ColOrder[i] = order[i]; } else { System.err.println("setColOrder: length does not match (" + order.length + " <> " + getColCount() + ") - ignored!"); } } } /** * returns the current order of the columns, null means the default order * @return the current order of the columns */ public int[] getColOrder() { return m_ColOrder; } /** * returns the displayed index of the given col, depending on the order of * columns, returns -1 if index out of bounds * @param index the column to get the displayed index for * @return the real index of the column */ public int getDisplayCol(int index) { if ( (index >= 0) && (index < getColCount()) ) { if (getColOrder() == null) return index; else return getColOrder()[index]; } else { return -1; } } /** * returns the given number as string rounded to the given number of * decimals. additional necessary 0's are added * @param d the number to format * @param prec the number of decimals after the point * @return the formatted number */ protected String doubleToString(double d, int prec) { String result; int currentPrec; int i; result = Utils.doubleToString(d, prec); // decimal point? if (result.indexOf(".") == -1) result += "."; // precision so far? currentPrec = result.length() - result.indexOf(".") - 1; for (i = currentPrec; i < prec; i++) result += "0"; return result; } /** * trims the given string down to the given length if longer, otherwise * leaves it unchanged. a length of "0" leaves the string always * unchanged. * @param s the string to trim (if too long) * @param length the max. length (0 means infinity) * @return the trimmed string */ protected String trimString(String s, int length) { if ( (length > 0) && (s.length() > length) ) return s.substring(0, length); else return s; } /** * pads the given string on the right until it reaches the given length, if * longer cuts it down. if length is 0 then nothing is done. * @param s the string to pad * @param length the max. length of the string * @return the padded string */ protected String padString(String s, int length) { return padString(s, length, false); } /** * pads the given string until it reaches the given length, if longer cuts * it down. if length is 0 then nothing is done. * @param s the string to pad * @param length the max. length of the string * @param left whether to pad left or right * @return the padded string */ protected String padString(String s, int length, boolean left) { String result; int i; result = s; // pad with blanks for (i = s.length(); i < length; i++) { if (left) result = " " + result; else result = result + " "; } // too long? if ( (length > 0) && (result.length() > length) ) result = result.substring(0, length); return result; } /** * returns the length of the longest cell in the given column * @param data the data to base the calculation on * @param col the column to check * @return the maximum length */ protected int getColSize(String[][] data, int col) { return getColSize(data, col, false, false); } /** * returns the length of the longest cell in the given column * @param data the data to base the calculation on * @param col the column to check * @param skipFirst whether to skip the first row * @param skipLast whether to skip the last row * @return the maximum length */ protected int getColSize( String[][] data, int col, boolean skipFirst, boolean skipLast ) { int result; int i; result = 0; if ( (col >= 0) && (col < data[0].length) ) { for (i = 0; i < data.length; i++) { // skip first? if ( (i == 0) && (skipFirst) ) continue; // skip last? if ( (i == data.length - 1) && (skipLast) ) continue; if (data[i][col].length() > result) result = data[i][col].length(); } } return result; } /** * removes the filter classname from the given string if it should be * removed, otherwise leaves the string alone * @see #getRemoveFilterName() */ protected String removeFilterName(String s) { if (getRemoveFilterName()) return s.replaceAll("-weka\\.filters\\..*", "") .replaceAll("-unsupervised\\..*", "") .replaceAll("-supervised\\..*", ""); else return s; } /** * returns a 2-dimensional array with the prepared data. includes the column * and row names. hidden cols/rows are already excluded.
* first row: column names
* last row: wins/ties/losses
* first col: row names
*/ protected String[][] toArray() { int i; int n; int ii; int nn; int x; int y; String[][] result; String[][] tmpResult; int cols; int rows; int[] widths; boolean valueExists; // determine visible cols/rows rows = getVisibleRowCount(); if (getShowAverage()) rows++; cols = getVisibleColCount(); if (getShowStdDev()) cols = cols*3; // mean + stddev + sign. else cols = cols*2; // mean + stddev result = new String[rows + 2][cols + 1]; // col names result[0][0] = trimString("Dataset", getRowNameWidth()); x = 1; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) continue; result[0][x] = trimString( removeFilterName(getColName(i)), getColNameWidth()); x++; // std dev if (getShowStdDev()) { result[0][x] = ""; x++; } // sign. result[0][x] = ""; x++; } // row names y = 1; for (ii = 0; ii < getRowCount(); ii++) { i = getDisplayRow(ii); if (!getRowHidden(i)) { result[y][0] = trimString( removeFilterName(getRowName(i)), getRowNameWidth()); y++; } } // fill in mean/std dev y = 1; for (ii = 0; ii < getRowCount(); ii++) { i = getDisplayRow(ii); if (getRowHidden(i)) continue; x = 1; for (nn = 0; nn < getColCount(); nn++) { n = getDisplayCol(nn); if (getColHidden(n)) continue; // do we have a value in the matrix? valueExists = (!Double.isNaN(getMean(n, i))); // mean if (!valueExists) result[y][x] = ""; else result[y][x] = doubleToString(getMean(n, i), getMeanPrec()); x++; // stddev if (getShowStdDev()) { if (!valueExists) result[y][x] = ""; else if (Double.isInfinite(getStdDev(n, i))) result[y][x] = "Inf"; else result[y][x] = doubleToString(getStdDev(n, i), getStdDevPrec()); x++; } // significance if (!valueExists) { result[y][x] = ""; } else { switch (getSignificance(n, i)) { case SIGNIFICANCE_TIE: result[y][x] = TIE_STRING; break; case SIGNIFICANCE_WIN: result[y][x] = WIN_STRING; break; case SIGNIFICANCE_LOSS: result[y][x] = LOSS_STRING; break; } } x++; } y++; } // the average if (getShowAverage()) { y = result.length - 2; x = 0; result[y][0] = "Average"; x++; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) continue; // mean-average result[y][x] = doubleToString(getAverage(i), getMeanPrec()); x++; // std dev. if (getShowStdDev()) { result[y][x] = ""; x++; } // significance result[y][x] = ""; x++; } } // wins/ties/losses y = result.length - 1; x = 0; result[y][0] = LEFT_PARENTHESES + WIN_STRING + "/" + TIE_STRING + "/" + LOSS_STRING + RIGHT_PARENTHESES; x++; for (ii = 0; ii < getColCount(); ii++) { i = getDisplayCol(ii); if (getColHidden(i)) continue; // mean result[y][x] = ""; x++; // std dev. if (getShowStdDev()) { result[y][x] = ""; x++; } // significance result[y][x] = LEFT_PARENTHESES + getSignificanceCount(i, SIGNIFICANCE_WIN) + "/" + getSignificanceCount(i, SIGNIFICANCE_TIE) + "/" + getSignificanceCount(i, SIGNIFICANCE_LOSS) + RIGHT_PARENTHESES; x++; } // base column has no significance -> remove these columns tmpResult = new String[result.length][result[0].length - 1]; x = 0; for (i = 0; i < result[0].length; i++) { // significance if ( ((i == 3) && ( getShowStdDev())) || ((i == 2) && (!getShowStdDev())) ) continue; for (n = 0; n < result.length; n++) tmpResult[n][x] = result[n][i]; x++; } result = tmpResult; return result; } /** * returns true if the index (in the array produced by toArray(boolean)) * is the row name */ protected boolean isRowName(int index) { return (index == 0); } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a mean */ protected boolean isMean(int index) { index--; // dataset if (index == 0) { return true; // base column } else { index--; // base column if (index < 0) return false; if (getShowStdDev()) return (index % 3 == 1); else return (index % 2 == 0); } } /** * returns true if the row index (in the array produced by toArray(boolean)) * contains the average row */ protected boolean isAverage(int rowIndex) { if (getShowAverage()) return (getVisibleRowCount() + 1 == rowIndex); else return false; } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a std deviation */ protected boolean isStdDev(int index) { index--; // dataset index--; // base column if (getShowStdDev()) { if (index == 0) { return true; // stddev of base column } else { index--; // stddev of base column if (index < 0) return false; return (index % 3 == 1); } } else return false; } /** * returns true if the index (in the array produced by toArray(boolean)) * contains a significance column */ protected boolean isSignificance(int index) { index--; // dataset index--; // base column if (getShowStdDev()) { index--; // stddev of base column if (index < 0) return false; return (index % 3 == 2); } else { if (index < 0) return false; return (index % 2 == 1); } } /** * returns the matrix as a string */ public abstract String toStringMatrix(); /** * returns the matrix as a string * @see #toStringMatrix() */ public String toString() { return toStringMatrix(); } /** * removes all the header information */ public void clearHeader() { m_HeaderKeys = new Vector(); m_HeaderValues = new Vector(); } /** * adds the key-value pair to the header * @param key the name of the header value * @param value the value of the header value */ public void addHeader(String key, String value) { int pos; pos = m_HeaderKeys.indexOf(key); if (pos > -1) { m_HeaderValues.set(pos, value); } else { m_HeaderKeys.add(key); m_HeaderValues.add(value); } } /** * returns the value associated with the given key, null if if cannot be * found * @param key the key to retrieve the value for * @return the associated value */ public String getHeader(String key) { int pos; pos = m_HeaderKeys.indexOf(key); if (pos == 0) return null; else return (String) m_HeaderKeys.get(pos); } /** * returns an enumeration of the header keys * @return all stored keys */ public Enumeration headerKeys() { return m_HeaderKeys.elements(); } /** * returns the header of the matrix as a string * @see #m_HeaderKeys * @see #m_HeaderValues */ public abstract String toStringHeader(); /** * returns returns a key for all the col names, for better readability if * the names got cut off */ public abstract String toStringKey(); /** * clears the current summary data */ public void clearSummary() { m_NonSigWins = null; m_Wins = null; } /** * sets the non-significant and significant wins of the resultsets * @param nonSigWins the non-significant wins * @param wins the significant wins */ public void setSummary(int[][] nonSigWins, int[][] wins) { int i; int n; m_NonSigWins = new int[nonSigWins.length][nonSigWins[0].length]; m_Wins = new int[wins.length][wins[0].length]; for (i = 0; i < m_NonSigWins.length; i++) { for (n = 0; n < m_NonSigWins[i].length; n++) { m_NonSigWins[i][n] = nonSigWins[i][n]; m_Wins[i][n] = wins[i][n]; } } } /** * returns the character representation of the given column */ protected String getSummaryTitle(int col) { return "" + (char) ((int) 'a' + col % 26); } /** * returns the summary as string */ public abstract String toStringSummary(); /** * clears the currently stored ranking data */ public void clearRanking() { m_RankingWins = null; m_RankingLosses = null; m_RankingDiff = null; } /** * sets the ranking data based on the wins * @param wins the wins */ public void setRanking(int[][] wins) { int i; int j; m_RankingWins = new int[wins.length]; m_RankingLosses = new int[wins.length]; m_RankingDiff = new int[wins.length]; for (i = 0; i < wins.length; i++) { for (j = 0; j < wins[i].length; j++) { m_RankingWins[j] += wins[i][j]; m_RankingDiff[j] += wins[i][j]; m_RankingLosses[i] += wins[i][j]; m_RankingDiff[i] -= wins[i][j]; } } } /** * returns the ranking in a string representation */ public abstract String toStringRanking(); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy