weka.experiment.ResultMatrixSignificance Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ResultMatrixSignificance.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import weka.core.RevisionUtils;
/**
* This matrix is a container for the datasets and classifier setups and
* their statistics. It outputs only the significance indicators - sometimes
* good for recognizing patterns.
*
*
* @author FracPete (fracpete at waikato dot ac dot nz)
* @version $Revision: 1.5 $
*/
public class ResultMatrixSignificance
extends ResultMatrix {
/** for serialization */
private static final long serialVersionUID = -1280545644109764206L;
/**
* initializes the matrix as 1x1 matrix
*/
public ResultMatrixSignificance() {
this(1, 1);
}
/**
* initializes the matrix with the given dimensions
*/
public ResultMatrixSignificance(int cols, int rows) {
super(cols, rows);
}
/**
* initializes the matrix with the values from the given matrix
* @param matrix the matrix to get the values from
*/
public ResultMatrixSignificance(ResultMatrix matrix) {
super(matrix);
}
/**
* returns the name of the output format
*/
public String getDisplayName() {
return "Significance only";
}
/**
* removes the stored data but retains the dimensions of the matrix
*/
public void clear() {
super.clear();
setPrintColNames(false);
setRowNameWidth(40);
super.setShowStdDev(false);
}
/**
* sets whether to display the std deviations or not - always false!
*/
public void setShowStdDev(boolean show) {
// ignore
}
/**
* returns the matrix as plain text
*/
public String toStringMatrix() {
StringBuffer result;
String[][] cells;
int i;
int n;
int nameWidth;
String line;
String colStr;
int rows;
result = new StringBuffer();
cells = toArray();
// pad names
nameWidth = getColSize(cells, 0);
for (i = 0; i < cells.length - 1; i++)
cells[i][0] = padString(cells[i][0], nameWidth);
// determine number of displayed rows
rows = cells.length - 1;
if (getShowAverage())
rows--;
for (i = 0; i < rows; i++) {
line = "";
colStr = "";
for (n = 0; n < cells[i].length; n++) {
// the header of the column
if (isMean(n) || isRowName(n))
colStr = cells[0][n];
if ( (n > 1) && (!isSignificance(n)) )
continue;
// padding between cols
if (n > 0)
line += " ";
// padding for "(" below dataset line
if ( (i > 0) && (n > 1) )
line += " ";
if (i == 0) {
line += colStr;
}
else {
if (n == 0) {
line += cells[i][n];
}
else if (n == 1) {
line += colStr.replaceAll(".", " "); // base column has no significance!
}
else {
line += cells[i][n];
// add blanks dep. on length of #
line += colStr.replaceAll(".", " ").substring(2);
}
}
}
result.append(line + "\n");
// separator line
if (i == 0)
result.append(line.replaceAll(".", "-") + "\n");
}
return result.toString();
}
/**
* returns the header of the matrix as a string
* @see #m_HeaderKeys
* @see #m_HeaderValues
*/
public String toStringHeader() {
return new ResultMatrixPlainText(this).toStringHeader();
}
/**
* returns returns a key for all the col names, for better readability if
* the names got cut off
*/
public String toStringKey() {
return new ResultMatrixPlainText(this).toStringKey();
}
/**
* returns the summary as string
*/
public String toStringSummary() {
return new ResultMatrixPlainText(this).toStringSummary();
}
/**
* returns the ranking in a string representation
*/
public String toStringRanking() {
return new ResultMatrixPlainText(this).toStringRanking();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.5 $");
}
/**
* for testing only
*/
public static void main(String[] args) {
ResultMatrix matrix;
int i;
int n;
matrix = new ResultMatrixSignificance(3, 3);
// set header
matrix.addHeader("header1", "value1");
matrix.addHeader("header2", "value2");
matrix.addHeader("header2", "value3");
// set values
for (i = 0; i < matrix.getRowCount(); i++) {
for (n = 0; n < matrix.getColCount(); n++) {
matrix.setMean(n, i, (i+1)*n);
matrix.setStdDev(n, i, ((double) (i+1)*n) / 100);
if (i == n) {
if (i % 2 == 1)
matrix.setSignificance(n, i, SIGNIFICANCE_WIN);
else
matrix.setSignificance(n, i, SIGNIFICANCE_LOSS);
}
}
}
System.out.println("\n\n--> " + matrix.getDisplayName());
System.out.println("\n1. complete\n");
System.out.println(matrix.toStringHeader() + "\n");
System.out.println(matrix.toStringMatrix() + "\n");
System.out.println(matrix.toStringKey());
System.out.println("\n2. complete with std deviations\n");
matrix.setShowStdDev(true);
System.out.println(matrix.toStringMatrix());
System.out.println("\n3. cols numbered\n");
matrix.setPrintColNames(false);
System.out.println(matrix.toStringMatrix());
System.out.println("\n4. second col missing\n");
matrix.setColHidden(1, true);
System.out.println(matrix.toStringMatrix());
System.out.println("\n5. last row missing, rows numbered too\n");
matrix.setRowHidden(2, true);
matrix.setPrintRowNames(false);
System.out.println(matrix.toStringMatrix());
System.out.println("\n6. mean prec to 3\n");
matrix.setMeanPrec(3);
matrix.setPrintRowNames(false);
System.out.println(matrix.toStringMatrix());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy