All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.ClassifierSubsetEval Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ClassifierSubsetEval.java
 *    Copyright (C) 2000 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.attributeSelection;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.rules.ZeroR;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

import java.io.File;
import java.util.BitSet;
import java.util.Enumeration;
import java.util.Vector;


/**
 
 * Classifier subset evaluator:
*
* Evaluates attribute subsets on training data or a seperate hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes. *

* * Valid options are:

* *

 -B <classifier>
 *  class name of the classifier to use for accuracy estimation.
 *  Place any classifier options LAST on the command line
 *  following a "--". eg.:
 *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
 *  (default: weka.classifiers.rules.ZeroR)
* *
 -T
 *  Use the training data to estimate accuracy.
* *
 -H <filename>
 *  Name of the hold out/test set to 
 *  estimate accuracy on.
* *
 
 * Options specific to scheme weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Mark Hall ([email protected]) * @version $Revision: 5511 $ */ public class ClassifierSubsetEval extends HoldOutSubsetEvaluator implements OptionHandler, ErrorBasedMeritEvaluator { /** for serialization */ static final long serialVersionUID = 7532217899385278710L; /** training instances */ private Instances m_trainingInstances; /** class index */ private int m_classIndex; /** number of attributes in the training data */ private int m_numAttribs; /** number of training instances */ private int m_numInstances; /** holds the classifier to use for error estimates */ private Classifier m_Classifier = new ZeroR(); /** holds the evaluation object to use for evaluating the classifier */ private Evaluation m_Evaluation; /** the file that containts hold out/test instances */ private File m_holdOutFile = new File("Click to set hold out or " +"test instances"); /** the instances to test on */ private Instances m_holdOutInstances = null; /** evaluate on training data rather than seperate hold out/test set */ private boolean m_useTraining = true; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Classifier subset evaluator:\n\nEvaluates attribute subsets on training data or a seperate " + "hold out testing set. Uses a classifier to estimate the 'merit' of a set of attributes."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector newVector = new Vector(3); newVector.addElement(new Option( "\tclass name of the classifier to use for accuracy estimation.\n" + "\tPlace any classifier options LAST on the command line\n" + "\tfollowing a \"--\". eg.:\n" + "\t\t-B weka.classifiers.bayes.NaiveBayes ... -- -K\n" + "\t(default: weka.classifiers.rules.ZeroR)", "B", 1, "-B ")); newVector.addElement(new Option( "\tUse the training data to estimate" +" accuracy.", "T",0,"-T")); newVector.addElement(new Option( "\tName of the hold out/test set to " +"\n\testimate accuracy on.", "H", 1,"-H ")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to " + "scheme " + m_Classifier.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -B <classifier>
   *  class name of the classifier to use for accuracy estimation.
   *  Place any classifier options LAST on the command line
   *  following a "--". eg.:
   *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
   *  (default: weka.classifiers.rules.ZeroR)
* *
 -T
   *  Use the training data to estimate accuracy.
* *
 -H <filename>
   *  Name of the hold out/test set to 
   *  estimate accuracy on.
* *
 
   * Options specific to scheme weka.classifiers.rules.ZeroR:
   * 
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('B', options); if (optionString.length() == 0) optionString = ZeroR.class.getName(); setClassifier(Classifier.forName(optionString, Utils.partitionOptions(options))); optionString = Utils.getOption('H',options); if (optionString.length() != 0) { setHoldOutFile(new File(optionString)); } setUseTraining(Utils.getFlag('T',options)); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String classifierTipText() { return "Classifier to use for estimating the accuracy of subsets"; } /** * Set the classifier to use for accuracy estimation * * @param newClassifier the Classifier to use. */ public void setClassifier (Classifier newClassifier) { m_Classifier = newClassifier; } /** * Get the classifier used as the base learner. * * @return the classifier used as the classifier */ public Classifier getClassifier () { return m_Classifier; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String holdOutFileTipText() { return "File containing hold out/test instances."; } /** * Gets the file that holds hold out/test instances. * @return File that contains hold out instances */ public File getHoldOutFile() { return m_holdOutFile; } /** * Set the file that contains hold out/test instances * @param h the hold out file */ public void setHoldOutFile(File h) { m_holdOutFile = h; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useTrainingTipText() { return "Use training data instead of hold out/test instances."; } /** * Get if training data is to be used instead of hold out/test data * @return true if training data is to be used instead of hold out data */ public boolean getUseTraining() { return m_useTraining; } /** * Set if training data is to be used instead of hold out/test data * @param t true if training data is to be used instead of hold out data */ public void setUseTraining(boolean t) { m_useTraining = t; } /** * Gets the current settings of ClassifierSubsetEval * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] classifierOptions = new String[0]; if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); } String[] options = new String[6 + classifierOptions.length]; int current = 0; if (getClassifier() != null) { options[current++] = "-B"; options[current++] = getClassifier().getClass().getName(); } if (getUseTraining()) { options[current++] = "-T"; } options[current++] = "-H"; options[current++] = getHoldOutFile().getPath(); if (classifierOptions.length > 0) { options[current++] = "--"; System.arraycopy(classifierOptions, 0, options, current, classifierOptions.length); current += classifierOptions.length; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result; if (getClassifier() == null) { result = super.getCapabilities(); result.disableAll(); } else { result = getClassifier().getCapabilities(); } // set dependencies for (Capability cap: Capability.values()) result.enableDependency(cap); return result; } /** * Generates a attribute evaluator. Has to initialize all fields of the * evaluator that are not being set via options. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator (Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); m_trainingInstances = data; m_classIndex = m_trainingInstances.classIndex(); m_numAttribs = m_trainingInstances.numAttributes(); m_numInstances = m_trainingInstances.numInstances(); // load the testing data if (!m_useTraining && (!getHoldOutFile().getPath().startsWith("Click to set"))) { java.io.Reader r = new java.io.BufferedReader( new java.io.FileReader(getHoldOutFile().getPath())); m_holdOutInstances = new Instances(r); m_holdOutInstances.setClassIndex(m_trainingInstances.classIndex()); if (m_trainingInstances.equalHeaders(m_holdOutInstances) == false) { throw new Exception("Hold out/test set is not compatable with " +"training data."); } } } /** * Evaluates a subset of attributes * * @param subset a bitset representing the attribute subset to be * evaluated * @return the error rate * @throws Exception if the subset could not be evaluated */ public double evaluateSubset (BitSet subset) throws Exception { int i,j; double errorRate = 0; int numAttributes = 0; Instances trainCopy=null; Instances testCopy=null; Remove delTransform = new Remove(); delTransform.setInvertSelection(true); // copy the training instances trainCopy = new Instances(m_trainingInstances); if (!m_useTraining) { if (m_holdOutInstances == null) { throw new Exception("Must specify a set of hold out/test instances " +"with -H"); } // copy the test instances testCopy = new Instances(m_holdOutInstances); } // count attributes set in the BitSet for (i = 0; i < m_numAttribs; i++) { if (subset.get(i)) { numAttributes++; } } // set up an array of attribute indexes for the filter (+1 for the class) int[] featArray = new int[numAttributes + 1]; for (i = 0, j = 0; i < m_numAttribs; i++) { if (subset.get(i)) { featArray[j++] = i; } } featArray[j] = m_classIndex; delTransform.setAttributeIndicesArray(featArray); delTransform.setInputFormat(trainCopy); trainCopy = Filter.useFilter(trainCopy, delTransform); if (!m_useTraining) { testCopy = Filter.useFilter(testCopy, delTransform); } // build the classifier m_Classifier.buildClassifier(trainCopy); m_Evaluation = new Evaluation(trainCopy); if (!m_useTraining) { m_Evaluation.evaluateModel(m_Classifier, testCopy); } else { m_Evaluation.evaluateModel(m_Classifier, trainCopy); } if (m_trainingInstances.classAttribute().isNominal()) { errorRate = m_Evaluation.errorRate(); } else { errorRate = m_Evaluation.meanAbsoluteError(); } m_Evaluation = null; // return the negative of the error rate as search methods need to // maximize something return -errorRate; } /** * Evaluates a subset of attributes with respect to a set of instances. * Calling this function overides any test/hold out instancs set from * setHoldOutFile. * @param subset a bitset representing the attribute subset to be * evaluated * @param holdOut a set of instances (possibly seperate and distinct * from those use to build/train the evaluator) with which to * evaluate the merit of the subset * @return the "merit" of the subset on the holdOut data * @throws Exception if the subset cannot be evaluated */ public double evaluateSubset(BitSet subset, Instances holdOut) throws Exception { int i,j; double errorRate; int numAttributes = 0; Instances trainCopy=null; Instances testCopy=null; if (m_trainingInstances.equalHeaders(holdOut) == false) { throw new Exception("evaluateSubset : Incompatable instance types."); } Remove delTransform = new Remove(); delTransform.setInvertSelection(true); // copy the training instances trainCopy = new Instances(m_trainingInstances); testCopy = new Instances(holdOut); // count attributes set in the BitSet for (i = 0; i < m_numAttribs; i++) { if (subset.get(i)) { numAttributes++; } } // set up an array of attribute indexes for the filter (+1 for the class) int[] featArray = new int[numAttributes + 1]; for (i = 0, j = 0; i < m_numAttribs; i++) { if (subset.get(i)) { featArray[j++] = i; } } featArray[j] = m_classIndex; delTransform.setAttributeIndicesArray(featArray); delTransform.setInputFormat(trainCopy); trainCopy = Filter.useFilter(trainCopy, delTransform); testCopy = Filter.useFilter(testCopy, delTransform); // build the classifier m_Classifier.buildClassifier(trainCopy); m_Evaluation = new Evaluation(trainCopy); m_Evaluation.evaluateModel(m_Classifier, testCopy); if (m_trainingInstances.classAttribute().isNominal()) { errorRate = m_Evaluation.errorRate(); } else { errorRate = m_Evaluation.meanAbsoluteError(); } m_Evaluation = null; // return the negative of the error as search methods need to // maximize something return -errorRate; } /** * Evaluates a subset of attributes with respect to a single instance. * Calling this function overides any hold out/test instances set * through setHoldOutFile. * @param subset a bitset representing the attribute subset to be * evaluated * @param holdOut a single instance (possibly not one of those used to * build/train the evaluator) with which to evaluate the merit of the subset * @param retrain true if the classifier should be retrained with respect * to the new subset before testing on the holdOut instance. * @return the "merit" of the subset on the holdOut instance * @throws Exception if the subset cannot be evaluated */ public double evaluateSubset(BitSet subset, Instance holdOut, boolean retrain) throws Exception { int i,j; double error; int numAttributes = 0; Instances trainCopy=null; Instance testCopy=null; if (m_trainingInstances.equalHeaders(holdOut.dataset()) == false) { throw new Exception("evaluateSubset : Incompatable instance types."); } Remove delTransform = new Remove(); delTransform.setInvertSelection(true); // copy the training instances trainCopy = new Instances(m_trainingInstances); testCopy = (Instance)holdOut.copy(); // count attributes set in the BitSet for (i = 0; i < m_numAttribs; i++) { if (subset.get(i)) { numAttributes++; } } // set up an array of attribute indexes for the filter (+1 for the class) int[] featArray = new int[numAttributes + 1]; for (i = 0, j = 0; i < m_numAttribs; i++) { if (subset.get(i)) { featArray[j++] = i; } } featArray[j] = m_classIndex; delTransform.setAttributeIndicesArray(featArray); delTransform.setInputFormat(trainCopy); if (retrain) { trainCopy = Filter.useFilter(trainCopy, delTransform); // build the classifier m_Classifier.buildClassifier(trainCopy); } delTransform.input(testCopy); testCopy = delTransform.output(); double pred; double [] distrib; distrib = m_Classifier.distributionForInstance(testCopy); if (m_trainingInstances.classAttribute().isNominal()) { pred = distrib[(int)testCopy.classValue()]; } else { pred = distrib[0]; } if (m_trainingInstances.classAttribute().isNominal()) { error = 1.0 - pred; } else { error = testCopy.classValue() - pred; } // return the negative of the error as search methods need to // maximize something return -error; } /** * Returns a string describing classifierSubsetEval * * @return the description as a string */ public String toString() { StringBuffer text = new StringBuffer(); if (m_trainingInstances == null) { text.append("\tClassifier subset evaluator has not been built yet\n"); } else { text.append("\tClassifier Subset Evaluator\n"); text.append("\tLearning scheme: " + getClassifier().getClass().getName() + "\n"); text.append("\tScheme options: "); String[] classifierOptions = new String[0]; if (m_Classifier instanceof OptionHandler) { classifierOptions = ((OptionHandler)m_Classifier).getOptions(); for (int i = 0; i < classifierOptions.length; i++) { text.append(classifierOptions[i] + " "); } } text.append("\n"); text.append("\tHold out/test set: "); if (!m_useTraining) { if (getHoldOutFile().getPath().startsWith("Click to set")) { text.append("none\n"); } else { text.append(getHoldOutFile().getPath()+'\n'); } } else { text.append("Training data\n"); } if (m_trainingInstances.attribute(m_classIndex).isNumeric()) { text.append("\tAccuracy estimation: MAE\n"); } else { text.append("\tAccuracy estimation: classification error\n"); } } return text.toString(); } /** * reset to defaults */ protected void resetOptions () { m_trainingInstances = null; m_Evaluation = null; m_Classifier = new ZeroR(); m_holdOutFile = new File("Click to set hold out or test instances"); m_holdOutInstances = null; m_useTraining = false; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5511 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main (String[] args) { runEvaluator(new ClassifierSubsetEval(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy