All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.ci.ICSSearchAlgorithm Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * ICSSearchAlgorithm.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */


package weka.classifiers.bayes.net.search.ci;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.io.FileReader;
import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm uses conditional independence tests to find a skeleton, finds V-nodes and applies a set of rules to find the directions of the remaining arrows.
 * 

* * Valid options are:

* *

 -cardinality <num>
 *  When determining whether an edge exists a search is performed 
 *  for a set Z that separates the nodes. MaxCardinality determines 
 *  the maximum size of the set Z. This greatly influences the 
 *  length of the search. (default 2)
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @author Remco Bouckaert * @version $Revision: 1.8 $ */ public class ICSSearchAlgorithm extends CISearchAlgorithm { /** for serialization */ static final long serialVersionUID = -2510985917284798576L; /** * returns the name of the attribute with the given index * * @param iAttribute the index of the attribute * @return the name of the attribute */ String name(int iAttribute) { return m_instances.attribute(iAttribute).name(); } /** * returns the number of attributes * * @return the number of attributes */ int maxn() { return m_instances.numAttributes(); } /** maximum size of separating set **/ private int m_nMaxCardinality = 2; /** * sets the cardinality * * @param nMaxCardinality the max cardinality */ public void setMaxCardinality(int nMaxCardinality) { m_nMaxCardinality = nMaxCardinality; } /** * returns the max cardinality * * @return the max cardinality */ public int getMaxCardinality() { return m_nMaxCardinality; } class SeparationSet implements RevisionHandler { public int [] m_set; /** * constructor */ public SeparationSet() { m_set= new int [getMaxCardinality() + 1]; } // c'tor public boolean contains(int nItem) { for (int iItem = 0; iItem < getMaxCardinality() && m_set[iItem] != -1; iItem++) { if (m_set[iItem] == nItem) { return true; } } return false; } // contains /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.8 $"); } } // class sepset /** * Search for Bayes network structure using ICS algorithm * @param bayesNet datastructure to build network structure for * @param instances data set to learn from * @throws Exception if something goes wrong */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { // init m_BayesNet = bayesNet; m_instances = instances; boolean edges[][] = new boolean [maxn() + 1][]; boolean [] [] arrows = new boolean [maxn() + 1][]; SeparationSet [] [] sepsets = new SeparationSet [maxn() + 1][]; for (int iNode = 0 ; iNode < maxn() + 1; iNode++) { edges[iNode] = new boolean[maxn()]; arrows[iNode] = new boolean[maxn()]; sepsets[iNode] = new SeparationSet[maxn()]; } calcDependencyGraph(edges, sepsets); calcVeeNodes(edges, arrows, sepsets); calcArcDirections(edges, arrows); // transfrom into BayesNet datastructure for (int iNode = 0; iNode < maxn(); iNode++) { // clear parent set of AttributeX ParentSet oParentSet = m_BayesNet.getParentSet(iNode); while (oParentSet.getNrOfParents() > 0) { oParentSet.deleteLastParent(m_instances); } for (int iParent = 0; iParent < maxn(); iParent++) { if (arrows[iParent][iNode]) { oParentSet.addParent(iParent, m_instances); } } } } // search /** CalcDependencyGraph determines the skeleton of the BayesNetwork by * starting with a complete graph and removing edges (a--b) if it can * find a set Z such that a and b conditionally independent given Z. * The set Z is found by trying all possible subsets of nodes adjacent * to a and b, first of size 0, then of size 1, etc. up to size * m_nMaxCardinality * @param edges boolean matrix representing the edges * @param sepsets set of separating sets */ void calcDependencyGraph(boolean[][] edges, SeparationSet[][] sepsets) { /*calc undirected graph a-b iff D(a,S,b) for all S)*/ SeparationSet oSepSet; for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { /*start with complete graph*/ for (int iNode2 = 0; iNode2 < maxn(); iNode2++) { edges[iNode1][iNode2] = true; } } for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { edges[iNode1][iNode1] = false; } for (int iCardinality = 0; iCardinality <= getMaxCardinality(); iCardinality++) { for (int iNode1 = 0; iNode1 <= maxn() - 2; iNode1++) { for (int iNode2 = iNode1 + 1; iNode2 < maxn(); iNode2++) { if (edges[iNode1][iNode2]) { oSepSet = existsSepSet(iNode1, iNode2, iCardinality, edges); if (oSepSet != null) { edges[iNode1][iNode2] = false; edges[iNode2][iNode1] = false; sepsets[iNode1][iNode2] = oSepSet; sepsets[iNode2][iNode1] = oSepSet; // report separating set System.err.print("I(" + name(iNode1) + ", {"); for (int iNode3 = 0; iNode3 < iCardinality; iNode3++) { System.err.print(name(oSepSet.m_set[iNode3]) + " "); } System.err.print("} ," + name(iNode2) + ")\n"); } } } } // report current state of dependency graph System.err.print(iCardinality + " "); for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { System.err.print(name(iNode1) + " "); } System.err.print('\n'); for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { for (int iNode2 = 0; iNode2 < maxn(); iNode2++) { if (edges[iNode1][iNode2]) System.err.print("X "); else System.err.print(". "); } System.err.print(name(iNode1) + " "); System.err.print('\n'); } } } /*CalcDependencyGraph*/ /** ExistsSepSet tests if a separating set Z of node a and b exists of given * cardiniality exists. * The set Z is found by trying all possible subsets of nodes adjacent * to both a and b of the requested cardinality. * @param iNode1 index of first node a * @param iNode2 index of second node b * @param nCardinality size of the separating set Z * @param edges * @return SeparationSet containing set that separates iNode1 and iNode2 or null if no such set exists */ SeparationSet existsSepSet(int iNode1, int iNode2, int nCardinality, boolean [] [] edges) { /*Test if a separating set of node d and e exists of cardiniality k*/ // int iNode1_, iNode2_; int iNode3, iZ; SeparationSet Z = new SeparationSet(); Z.m_set[nCardinality] = -1; // iNode1_ = iNode1; // iNode2_ = iNode2; // find first candidate separating set Z if (nCardinality > 0) { Z.m_set[0] = next(-1, iNode1, iNode2, edges); iNode3 = 1; while (iNode3 < nCardinality) { Z.m_set[iNode3] = next(Z.m_set[iNode3 - 1], iNode1, iNode2, edges); iNode3++; } } if (nCardinality > 0) { iZ = maxn() - Z.m_set[nCardinality - 1] - 1; } else { iZ = 0; } while (iZ >= 0) { //check if candidate separating set makes iNode2_ and iNode1_ independent if (isConditionalIndependent(iNode2, iNode1, Z.m_set, nCardinality)) { return Z; } // calc next candidate separating set if (nCardinality > 0) { Z.m_set[nCardinality - 1] = next(Z.m_set[nCardinality - 1], iNode1, iNode2, edges); } iZ = nCardinality - 1; while (iZ >= 0 && Z.m_set[iZ] >= maxn()) { iZ = nCardinality - 1; while (iZ >= 0 && Z.m_set[iZ] >= maxn()) { iZ--; } if (iZ < 0) { break; } Z.m_set[iZ] = next(Z.m_set[iZ], iNode1, iNode2, edges); for (iNode3 = iZ + 1; iNode3 < nCardinality; iNode3++) { Z.m_set[iNode3] = next(Z.m_set[iNode3 - 1], iNode1, iNode2, edges); } iZ = nCardinality - 1; } } return null; } /*ExistsSepSet*/ /** * determine index of node that makes next candidate separating set * adjacent to iNode1 and iNode2, but not iNode2 itself * @param x index of current node * @param iNode1 first node * @param iNode2 second node (must be larger than iNode1) * @param edges skeleton so far * @return int index of next node adjacent to iNode1 after x */ int next(int x, int iNode1, int iNode2, boolean [] [] edges) { x++; while (x < maxn() && (!edges[iNode1][x] || !edges[iNode2][x] ||x == iNode2)) { x++; } return x; } /*next*/ /** CalcVeeNodes tries to find V-nodes, i.e. nodes a,b,c such that * a->c<-b and a-/-b. These nodes are identified by finding nodes * a,b,c in the skeleton such that a--c, c--b and a-/-b and furthermore * c is not in the set Z that separates a and b * @param edges skeleton * @param arrows resulting partially directed skeleton after all V-nodes * have been identified * @param sepsets separating sets */ void calcVeeNodes( boolean[][] edges, boolean[][] arrows, SeparationSet[][] sepsets) { // start with complete empty graph for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { for (int iNode2 = 0; iNode2 < maxn(); iNode2++) { arrows[iNode1][iNode2] = false; } } for (int iNode1 = 0; iNode1 < maxn() - 1; iNode1++) { for (int iNode2 = iNode1 + 1; iNode2 < maxn(); iNode2++) { if (!edges[iNode1][iNode2]) { /*i nonadj j*/ for (int iNode3 = 0; iNode3 < maxn(); iNode3++) { if ((iNode3 != iNode1 && iNode3 != iNode2 && edges[iNode1][iNode3] && edges[iNode2][iNode3]) & (!sepsets[iNode1][iNode2].contains(iNode3))) { arrows[iNode1][iNode3] = true; /*add arc i->k*/ arrows[iNode2][iNode3] = true; /*add arc j->k*/ } } } } } } // CalcVeeNodes /** CalcArcDirections assigns directions to edges that remain after V-nodes have * been identified. The arcs are directed using the following rules: Rule 1: i->j--k & i-/-k => j->k Rule 2: i->j->k & i--k => i->k Rule 3 m /|\ i | k => m->j i->j<-k \|/ j Rule 4 m / \ i---k => i->m & k->m i->j \ / j Rule 5: if no edges are directed then take a random one (first we can find) * @param edges skeleton * @param arrows resulting fully directed DAG */ void calcArcDirections(boolean[][] edges, boolean[][] arrows) { /*give direction to remaining arcs*/ int i, j, k, m; boolean bFound; do { bFound = false; /*Rule 1: i->j--k & i-/-k => j->k*/ for (i = 0; i < maxn(); i++) { for (j = 0; j < maxn(); j++) { if (i != j && arrows[i][j]) { for (k = 0; k < maxn(); k++) { if (i != k && j != k && edges[j][k] && !edges[i][k] && !arrows[j][k] && !arrows[k][j]) { arrows[j][k] = true; bFound = true; } } } } } /*Rule 2: i->j->k & i--k => i->k*/ for (i = 0; i < maxn(); i++) { for (j = 0; j < maxn(); j++) { if (i != j && arrows[i][j]) { for (k = 0; k < maxn(); k++) { if (i != k && j != k && edges[i][k] && arrows[j][k] && !arrows[i][k] && !arrows[k][i]) { arrows[i][k] = true; bFound = true; } } } } } /* Rule 3 m /|\ i | k => m->j i->j<-k \|/ j */ for (i = 0; i < maxn(); i++) { for (j = 0; j < maxn(); j++) { if (i != j && arrows[i][j]) { for (k = 0; k < maxn(); k++) { if (k != i && k != j && arrows[k][j] && !edges[k][i]) { for (m = 0; m < maxn(); m++) { if (m != i && m != j && m != k && edges[m][i] && !arrows[m][i] && !arrows[i][m] && edges[m][j] && !arrows[m][j] && !arrows[j][m] && edges[m][k] && !arrows[m][k] && !arrows[k][m]) { arrows[m][j] = true; bFound = true; } } } } } } } /* Rule 4 m / \ i---k => i->m & k->m i->j \ / j */ for (i = 0; i < maxn(); i++) { for (j = 0; j < maxn(); j++) { if (i != j && arrows[j][i]) { for (k = 0; k < maxn(); k++) { if (k != i && k != j && edges[k][j] && !arrows[k][j] && !arrows[j][k] && edges[k][i] && !arrows[k][i] && !arrows[i][k]) { for (m = 0; m < maxn(); m++) { if (m != i && m != j && m != k && edges[m][i] && !arrows[m][i] && !arrows[i][m] && edges[m][k] && !arrows[m][k] && !arrows[k][m]) { arrows[i][m] = true; arrows[k][m] = true; bFound = true; } } } } } } } /*Rule 5: if no edges are directed then take a random one (first we can find)*/ if (!bFound) { i = 0; while (!bFound && i < maxn()) { j = 0; while (!bFound && j < maxn()) { if (edges[i][j] && !arrows[i][j] && !arrows[j][i]) { arrows[i][j] = true; bFound = true; } j++; } i++; } } } while (bFound); } // CalcArcDirections /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tWhen determining whether an edge exists a search is performed \n" + "\tfor a set Z that separates the nodes. MaxCardinality determines \n" + "\tthe maximum size of the set Z. This greatly influences the \n" + "\tlength of the search. (default 2)", "cardinality", 1, "-cardinality ")); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); return result.elements(); } // listOption /** * Parses a given list of options.

* * Valid options are:

* *

 -cardinality <num>
	 *  When determining whether an edge exists a search is performed 
	 *  for a set Z that separates the nodes. MaxCardinality determines 
	 *  the maximum size of the set Z. This greatly influences the 
	 *  length of the search. (default 2)
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
	 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption("cardinality", options); if (tmpStr.length() != 0) setMaxCardinality(Integer.parseInt(tmpStr)); else setMaxCardinality(2); super.setOptions(options); } // setOptions /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); result.add("-cardinality"); result.add("" + getMaxCardinality()); return (String[]) result.toArray(new String[result.size()]); } // getOptions /** * @return a string to describe the MaxCardinality option. */ public String maxCardinalityTipText() { return "When determining whether an edge exists a search is performed for a set Z "+ "that separates the nodes. MaxCardinality determines the maximum size of the set Z. " + "This greatly influences the length of the search. Default value is 2."; } // maxCardinalityTipText /** * This will return a string describing the search algorithm. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses conditional independence tests " + "to find a skeleton, finds V-nodes and applies a set of rules to find the directions " + "of the remaining arrows."; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.8 $"); } /** * for testing the class * * @param argv the commandline parameters */ static public void main(String [] argv) { try { BayesNet b = new BayesNet(); b.setSearchAlgorithm( new ICSSearchAlgorithm()); Instances instances = new Instances(new FileReader("C:\\eclipse\\workspace\\weka\\data\\contact-lenses.arff")); instances.setClassIndex(instances.numAttributes() - 1); b.buildClassifier(instances); System.out.println(b.toString()); } catch (Exception e) { e.printStackTrace(); } } // main } // class ICSSearchAlgorithm




© 2015 - 2025 Weber Informatics LLC | Privacy Policy