All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.net.search.local.RepeatedHillClimber Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * RepeatedHillClimber.java
 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
 * 
 */
 
package weka.classifiers.bayes.net.search.local;

import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.net.ParentSet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/** 
 
 * This Bayes Network learning algorithm repeatedly uses hill climbing starting with a randomly generated network structure and return the best structure of the various runs.
 * 

* * Valid options are:

* *

 -U <integer>
 *  Number of runs
* *
 -A <seed>
 *  Random number seed
* *
 -P <nr of parents>
 *  Maximum number of parents
* *
 -R
 *  Use arc reversal operation.
 *  (default false)
* *
 -N
 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @author Remco Bouckaert ([email protected]) * @version $Revision: 1.6 $ */ public class RepeatedHillClimber extends HillClimber { /** for serialization */ static final long serialVersionUID = -6574084564213041174L; /** number of runs **/ int m_nRuns = 10; /** random number seed **/ int m_nSeed = 1; /** random number generator **/ Random m_random; /** * search determines the network structure/graph of the network * with the repeated hill climbing. * * @param bayesNet the network * @param instances the data to use * @throws Exception if something goes wrong */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { m_random = new Random(getSeed()); // keeps track of score pf best structure found so far double fBestScore; double fCurrentScore = 0.0; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { fCurrentScore += calcNodeScore(iAttribute); } // keeps track of best structure found so far BayesNet bestBayesNet; // initialize bestBayesNet fBestScore = fCurrentScore; bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); // go do the search for (int iRun = 0; iRun < m_nRuns; iRun++) { // generate random nework generateRandomNet(bayesNet, instances); // search super.search(bayesNet, instances); // calculate score fCurrentScore = 0.0; for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { fCurrentScore += calcNodeScore(iAttribute); } // keep track of best network seen so far if (fCurrentScore > fBestScore) { fBestScore = fCurrentScore; copyParentSets(bestBayesNet, bayesNet); } } // restore current network to best network copyParentSets(bayesNet, bestBayesNet); // free up memory bestBayesNet = null; m_Cache = null; } // search void generateRandomNet(BayesNet bayesNet, Instances instances) { int nNodes = instances.numAttributes(); // clear network for (int iNode = 0; iNode < nNodes; iNode++) { ParentSet parentSet = bayesNet.getParentSet(iNode); while (parentSet.getNrOfParents() > 0) { parentSet.deleteLastParent(instances); } } // initialize as naive Bayes? if (getInitAsNaiveBayes()) { int iClass = instances.classIndex(); // initialize parent sets to have arrow from classifier node to // each of the other nodes for (int iNode = 0; iNode < nNodes; iNode++) { if (iNode != iClass) { bayesNet.getParentSet(iNode).addParent(iClass, instances); } } } // insert random arcs int nNrOfAttempts = m_random.nextInt(nNodes * nNodes); for (int iAttempt = 0; iAttempt < nNrOfAttempts; iAttempt++) { int iTail = m_random.nextInt(nNodes); int iHead = m_random.nextInt(nNodes); if (bayesNet.getParentSet(iHead).getNrOfParents() < getMaxNrOfParents() && addArcMakesSense(bayesNet, instances, iHead, iTail)) { bayesNet.getParentSet(iHead).addParent(iTail, instances); } } } // generateRandomNet /** * copyParentSets copies parent sets of source to dest BayesNet * * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** * @return number of runs */ public int getRuns() { return m_nRuns; } // getRuns /** * Sets the number of runs * @param nRuns The number of runs to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } // setRuns /** * @return random number seed */ public int getSeed() { return m_nSeed; } // getSeed /** * Sets the random number seed * @param nSeed The number of the seed to set */ public void setSeed(int nSeed) { m_nSeed = nSeed; } // setSeed /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U ")); newVector.addElement(new Option("\tRandom number seed", "A", 1, "-A ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options.

* * Valid options are:

* *

 -U <integer>
	 *  Number of runs
* *
 -A <seed>
	 *  Random number seed
* *
 -P <nr of parents>
	 *  Maximum number of parents
* *
 -R
	 *  Use arc reversal operation.
	 *  (default false)
* *
 -N
	 *  Initial structure is empty (instead of Naive Bayes)
* *
 -mbc
	 *  Applies a Markov Blanket correction to the network structure, 
	 *  after a network structure is learned. This ensures that all 
	 *  nodes in the network are part of the Markov blanket of the 
	 *  classifier node.
* *
 -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
	 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } String sSeed = Utils.getOption('A', options); if (sSeed.length() != 0) { setSeed(Integer.parseInt(sSeed)); } super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[7 + superOptions.length]; int current = 0; options[current++] = "-U"; options[current++] = "" + getRuns(); options[current++] = "-A"; options[current++] = "" + getSeed(); // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm repeatedly uses hill climbing starting " + "with a randomly generated network structure and return the best structure of the " + "various runs."; } // globalInfo /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of times hill climbing is performed."; } // runsTipText /** * @return a string to describe the Seed option. */ public String seedTipText() { return "Initialization value for random number generator." + " Setting the seed allows replicability of experiments."; } // seedTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.6 $"); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy