weka.classifiers.evaluation.TwoClassStats Maven / Gradle / Ivy
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* TwoClassStats.java
* Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
/**
* Encapsulates performance functions for two-class problems.
*
* @author Len Trigg ([email protected])
* @version $Revision: 1.9 $
*/
public class TwoClassStats
implements RevisionHandler {
/** The names used when converting this object to a confusion matrix */
private static final String [] CATEGORY_NAMES = {"negative", "positive"};
/** Pos predicted as pos */
private double m_TruePos;
/** Neg predicted as pos */
private double m_FalsePos;
/** Neg predicted as neg */
private double m_TrueNeg;
/** Pos predicted as neg */
private double m_FalseNeg;
/**
* Creates the TwoClassStats with the given initial performance values.
*
* @param tp the number of correctly classified positives
* @param fp the number of incorrectly classified negatives
* @param tn the number of correctly classified negatives
* @param fn the number of incorrectly classified positives
*/
public TwoClassStats(double tp, double fp, double tn, double fn) {
setTruePositive(tp);
setFalsePositive(fp);
setTrueNegative(tn);
setFalseNegative(fn);
}
/** Sets the number of positive instances predicted as positive */
public void setTruePositive(double tp) { m_TruePos = tp; }
/** Sets the number of negative instances predicted as positive */
public void setFalsePositive(double fp) { m_FalsePos = fp; }
/** Sets the number of negative instances predicted as negative */
public void setTrueNegative(double tn) { m_TrueNeg = tn; }
/** Sets the number of positive instances predicted as negative */
public void setFalseNegative(double fn) { m_FalseNeg = fn; }
/** Gets the number of positive instances predicted as positive */
public double getTruePositive() { return m_TruePos; }
/** Gets the number of negative instances predicted as positive */
public double getFalsePositive() { return m_FalsePos; }
/** Gets the number of negative instances predicted as negative */
public double getTrueNegative() { return m_TrueNeg; }
/** Gets the number of positive instances predicted as negative */
public double getFalseNegative() { return m_FalseNeg; }
/**
* Calculate the true positive rate.
* This is defined as
*
* correctly classified positives
* ------------------------------
* total positives
*
*
* @return the true positive rate
*/
public double getTruePositiveRate() {
if (0 == (m_TruePos + m_FalseNeg)) {
return 0;
} else {
return m_TruePos / (m_TruePos + m_FalseNeg);
}
}
/**
* Calculate the false positive rate.
* This is defined as
*
* incorrectly classified negatives
* --------------------------------
* total negatives
*
*
* @return the false positive rate
*/
public double getFalsePositiveRate() {
if (0 == (m_FalsePos + m_TrueNeg)) {
return 0;
} else {
return m_FalsePos / (m_FalsePos + m_TrueNeg);
}
}
/**
* Calculate the precision.
* This is defined as
*
* correctly classified positives
* ------------------------------
* total predicted as positive
*
*
* @return the precision
*/
public double getPrecision() {
if (0 == (m_TruePos + m_FalsePos)) {
return 0;
} else {
return m_TruePos / (m_TruePos + m_FalsePos);
}
}
/**
* Calculate the recall.
* This is defined as
*
* correctly classified positives
* ------------------------------
* total positives
*
* (Which is also the same as the truePositiveRate.)
*
* @return the recall
*/
public double getRecall() { return getTruePositiveRate(); }
/**
* Calculate the F-Measure.
* This is defined as
*
* 2 * recall * precision
* ----------------------
* recall + precision
*
*
* @return the F-Measure
*/
public double getFMeasure() {
double precision = getPrecision();
double recall = getRecall();
if ((precision + recall) == 0) {
return 0;
}
return 2 * precision * recall / (precision + recall);
}
/**
* Calculate the fallout.
* This is defined as
*
* incorrectly classified negatives
* --------------------------------
* total predicted as positive
*
*
* @return the fallout
*/
public double getFallout() {
if (0 == (m_TruePos + m_FalsePos)) {
return 0;
} else {
return m_FalsePos / (m_TruePos + m_FalsePos);
}
}
/**
* Generates a ConfusionMatrix
representing the current
* two-class statistics, using class names "negative" and "positive".
*
* @return a ConfusionMatrix
.
*/
public ConfusionMatrix getConfusionMatrix() {
ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES);
cm.setElement(0, 0, m_TrueNeg);
cm.setElement(0, 1, m_FalsePos);
cm.setElement(1, 0, m_FalseNeg);
cm.setElement(1, 1, m_TruePos);
return cm;
}
/**
* Returns a string containing the various performance measures
* for the current object
*/
public String toString() {
StringBuffer res = new StringBuffer();
res.append(getTruePositive()).append(' ');
res.append(getFalseNegative()).append(' ');
res.append(getTrueNegative()).append(' ');
res.append(getFalsePositive()).append(' ');
res.append(getFalsePositiveRate()).append(' ');
res.append(getTruePositiveRate()).append(' ');
res.append(getPrecision()).append(' ');
res.append(getRecall()).append(' ');
res.append(getFMeasure()).append(' ');
res.append(getFallout()).append(' ');
return res.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.9 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy