All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.Grading Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Grading.java
 *    Copyright (C) 2000 University of Waikato
 *
 */

package weka.classifiers.meta;

import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Random;

/**
 
 * Implements Grading. The base classifiers are "graded".
*
* For more information, see
*
* A.K. Seewald, J. Fuernkranz: An Evaluation of Grading Classifiers. In: Advances in Intelligent Data Analysis: 4th International Conference, Berlin/Heidelberg/New York/Tokyo, 115-124, 2001. *

* * BibTeX: *

 * @inproceedings{Seewald2001,
 *    address = {Berlin/Heidelberg/New York/Tokyo},
 *    author = {A.K. Seewald and J. Fuernkranz},
 *    booktitle = {Advances in Intelligent Data Analysis: 4th International Conference},
 *    editor = {F. Hoffmann et al.},
 *    pages = {115-124},
 *    publisher = {Springer},
 *    title = {An Evaluation of Grading Classifiers},
 *    year = {2001}
 * }
 * 
*

* * Valid options are:

* *

 -M <scheme specification>
 *  Full name of meta classifier, followed by options.
 *  (default: "weka.classifiers.rules.Zero")
* *
 -X <number of folds>
 *  Sets the number of cross-validation folds.
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -B <classifier specification>
 *  Full class name of classifier to include, followed
 *  by scheme options. May be specified multiple times.
 *  (default: "weka.classifiers.rules.ZeroR")
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Alexander K. Seewald ([email protected]) * @author Eibe Frank ([email protected]) * @version $Revision: 1.13 $ */ public class Grading extends Stacking implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5207837947890081170L; /** The meta classifiers, one for each base classifier. */ protected Classifier [] m_MetaClassifiers = new Classifier[0]; /** InstPerClass */ protected double [] m_InstPerClass = null; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Implements Grading. The base classifiers are \"graded\".\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "A.K. Seewald and J. Fuernkranz"); result.setValue(Field.TITLE, "An Evaluation of Grading Classifiers"); result.setValue(Field.BOOKTITLE, "Advances in Intelligent Data Analysis: 4th International Conference"); result.setValue(Field.EDITOR, "F. Hoffmann et al."); result.setValue(Field.YEAR, "2001"); result.setValue(Field.PAGES, "115-124"); result.setValue(Field.PUBLISHER, "Springer"); result.setValue(Field.ADDRESS, "Berlin/Heidelberg/New York/Tokyo"); return result; } /** * Generates the meta data * * @param newData the data to work on * @param random the random number generator used in the generation * @throws Exception if generation fails */ protected void generateMetaLevel(Instances newData, Random random) throws Exception { m_MetaFormat = metaFormat(newData); Instances [] metaData = new Instances[m_Classifiers.length]; for (int i = 0; i < m_Classifiers.length; i++) { metaData[i] = metaFormat(newData); } for (int j = 0; j < m_NumFolds; j++) { Instances train = newData.trainCV(m_NumFolds, j, random); Instances test = newData.testCV(m_NumFolds, j); // Build base classifiers for (int i = 0; i < m_Classifiers.length; i++) { getClassifier(i).buildClassifier(train); for (int k = 0; k < test.numInstances(); k++) { metaData[i].add(metaInstance(test.instance(k),i)); } } } // calculate InstPerClass m_InstPerClass = new double[newData.numClasses()]; for (int i=0; i < newData.numClasses(); i++) m_InstPerClass[i]=0.0; for (int i=0; i < newData.numInstances(); i++) { m_InstPerClass[(int)newData.instance(i).classValue()]++; } m_MetaClassifiers = Classifier.makeCopies(m_MetaClassifier, m_Classifiers.length); for (int i = 0; i < m_Classifiers.length; i++) { m_MetaClassifiers[i].buildClassifier(metaData[i]); } } /** * Returns class probabilities for a given instance using the stacked classifier. * One class will always get all the probability mass (i.e. probability one). * * @param instance the instance to be classified * @throws Exception if instance could not be classified * successfully * @return the class distribution for the given instance */ public double[] distributionForInstance(Instance instance) throws Exception { double maxPreds; int numPreds=0; int numClassifiers=m_Classifiers.length; int idxPreds; double [] predConfs = new double[numClassifiers]; double [] preds; for (int i=0; iMaxInstPerClass) { MaxInstPerClass=(int)m_InstPerClass[i]; MaxClass=i; } } } int predictedIndex; if (numPreds==1) predictedIndex = Utils.maxIndex(preds); else { // System.out.print("?"); // System.out.print(instance.toString()); // for (int i=0; imaxVal) { maxVal=dist[j]; maxIdx=j; } } predConf= (instance.classValue()==maxIdx) ? 1:0; } values[idx]=predConf; metaInstance = new Instance(1, values); metaInstance.setDataset(m_MetaFormat); return metaInstance; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.13 $"); } /** * Main method for testing this class. * * @param argv should contain the following arguments: * -t training file [-T test file] [-c class index] */ public static void main(String [] argv) { runClassifier(new Grading(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy