weka.classifiers.meta.Grading Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* Grading.java
* Copyright (C) 2000 University of Waikato
*
*/
package weka.classifiers.meta;
import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import java.util.Random;
/**
* Implements Grading. The base classifiers are "graded".
*
* For more information, see
*
* A.K. Seewald, J. Fuernkranz: An Evaluation of Grading Classifiers. In: Advances in Intelligent Data Analysis: 4th International Conference, Berlin/Heidelberg/New York/Tokyo, 115-124, 2001.
*
*
* BibTeX:
*
* @inproceedings{Seewald2001,
* address = {Berlin/Heidelberg/New York/Tokyo},
* author = {A.K. Seewald and J. Fuernkranz},
* booktitle = {Advances in Intelligent Data Analysis: 4th International Conference},
* editor = {F. Hoffmann et al.},
* pages = {115-124},
* publisher = {Springer},
* title = {An Evaluation of Grading Classifiers},
* year = {2001}
* }
*
*
*
* Valid options are:
*
* -M <scheme specification>
* Full name of meta classifier, followed by options.
* (default: "weka.classifiers.rules.Zero")
*
* -X <number of folds>
* Sets the number of cross-validation folds.
*
* -S <num>
* Random number seed.
* (default 1)
*
* -B <classifier specification>
* Full class name of classifier to include, followed
* by scheme options. May be specified multiple times.
* (default: "weka.classifiers.rules.ZeroR")
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
* @author Alexander K. Seewald ([email protected])
* @author Eibe Frank ([email protected])
* @version $Revision: 1.13 $
*/
public class Grading
extends Stacking
implements TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = 5207837947890081170L;
/** The meta classifiers, one for each base classifier. */
protected Classifier [] m_MetaClassifiers = new Classifier[0];
/** InstPerClass */
protected double [] m_InstPerClass = null;
/**
* Returns a string describing classifier
* @return a description suitable for
* displaying in the explorer/experimenter gui
*/
public String globalInfo() {
return
"Implements Grading. The base classifiers are \"graded\".\n\n"
+ "For more information, see\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing
* detailed information about the technical background of this class,
* e.g., paper reference or book this class is based on.
*
* @return the technical information about this class
*/
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "A.K. Seewald and J. Fuernkranz");
result.setValue(Field.TITLE, "An Evaluation of Grading Classifiers");
result.setValue(Field.BOOKTITLE, "Advances in Intelligent Data Analysis: 4th International Conference");
result.setValue(Field.EDITOR, "F. Hoffmann et al.");
result.setValue(Field.YEAR, "2001");
result.setValue(Field.PAGES, "115-124");
result.setValue(Field.PUBLISHER, "Springer");
result.setValue(Field.ADDRESS, "Berlin/Heidelberg/New York/Tokyo");
return result;
}
/**
* Generates the meta data
*
* @param newData the data to work on
* @param random the random number generator used in the generation
* @throws Exception if generation fails
*/
protected void generateMetaLevel(Instances newData, Random random)
throws Exception {
m_MetaFormat = metaFormat(newData);
Instances [] metaData = new Instances[m_Classifiers.length];
for (int i = 0; i < m_Classifiers.length; i++) {
metaData[i] = metaFormat(newData);
}
for (int j = 0; j < m_NumFolds; j++) {
Instances train = newData.trainCV(m_NumFolds, j, random);
Instances test = newData.testCV(m_NumFolds, j);
// Build base classifiers
for (int i = 0; i < m_Classifiers.length; i++) {
getClassifier(i).buildClassifier(train);
for (int k = 0; k < test.numInstances(); k++) {
metaData[i].add(metaInstance(test.instance(k),i));
}
}
}
// calculate InstPerClass
m_InstPerClass = new double[newData.numClasses()];
for (int i=0; i < newData.numClasses(); i++) m_InstPerClass[i]=0.0;
for (int i=0; i < newData.numInstances(); i++) {
m_InstPerClass[(int)newData.instance(i).classValue()]++;
}
m_MetaClassifiers = Classifier.makeCopies(m_MetaClassifier,
m_Classifiers.length);
for (int i = 0; i < m_Classifiers.length; i++) {
m_MetaClassifiers[i].buildClassifier(metaData[i]);
}
}
/**
* Returns class probabilities for a given instance using the stacked classifier.
* One class will always get all the probability mass (i.e. probability one).
*
* @param instance the instance to be classified
* @throws Exception if instance could not be classified
* successfully
* @return the class distribution for the given instance
*/
public double[] distributionForInstance(Instance instance) throws Exception {
double maxPreds;
int numPreds=0;
int numClassifiers=m_Classifiers.length;
int idxPreds;
double [] predConfs = new double[numClassifiers];
double [] preds;
for (int i=0; iMaxInstPerClass) {
MaxInstPerClass=(int)m_InstPerClass[i];
MaxClass=i;
}
}
}
int predictedIndex;
if (numPreds==1)
predictedIndex = Utils.maxIndex(preds);
else
{
// System.out.print("?");
// System.out.print(instance.toString());
// for (int i=0; imaxVal) {
maxVal=dist[j];
maxIdx=j;
}
}
predConf= (instance.classValue()==maxIdx) ? 1:0;
}
values[idx]=predConf;
metaInstance = new Instance(1, values);
metaInstance.setDataset(m_MetaFormat);
return metaInstance;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 1.13 $");
}
/**
* Main method for testing this class.
*
* @param argv should contain the following arguments:
* -t training file [-T test file] [-c class index]
*/
public static void main(String [] argv) {
runClassifier(new Grading(), argv);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy