All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MIBoost Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MIBoost.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.
*
* For more information about Adaboost, see:
*
* Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. *

* * BibTeX: *

 * @inproceedings{Freund1996,
 *    address = {San Francisco},
 *    author = {Yoav Freund and Robert E. Schapire},
 *    booktitle = {Thirteenth International Conference on Machine Learning},
 *    pages = {148-156},
 *    publisher = {Morgan Kaufmann},
 *    title = {Experiments with a new boosting algorithm},
 *    year = {1996}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  Turn on debugging output.
* *
 -B <num>
 *  The number of bins in discretization
 *  (default 0, no discretization)
* *
 -R <num>
 *  Maximum number of boost iterations.
 *  (default 10)
* *
 -W <class name>
 *  Full name of classifier to boost.
 *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @version $Revision: 9144 $ */ public class MIBoost extends SingleClassifierEnhancer implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3808427225599279539L; /** the models for the iterations */ protected Classifier[] m_Models; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** attributes name for the new dataset used to build the model */ protected Instances m_Attributes; /** Number of iterations */ private int m_NumIterations = 100; /** Voting weights of models */ protected double[] m_Beta; /** the maximum number of boost iterations */ protected int m_MaxIterations = 10; /** the number of discretization bins */ protected int m_DiscretizeBin = 0; /** filter used for discretization */ protected Discretize m_Filter = null; /** filter used to convert the MI dataset into single-instance dataset */ protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "MI AdaBoost method, considers the geometric mean of posterior " + "of instances inside a bag (arithmatic mean of log-posterior) and " + "the expectation for a bag is taken inside the loss function.\n\n" + "For more information about Adaboost, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.PAGES, "148-156"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.ADDRESS, "San Francisco"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tThe number of bins in discretization\n" + "\t(default 0, no discretization)", "B", 1, "-B ")); result.addElement(new Option( "\tMaximum number of boost iterations.\n" + "\t(default 10)", "R", 1, "-R ")); result.addElement(new Option( "\tFull name of classifier to boost.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W ")); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) { result.addElement(enu.nextElement()); } return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Turn on debugging output.
* *
 -B <num>
   *  The number of bins in discretization
   *  (default 0, no discretization)
* *
 -R <num>
   *  Maximum number of boost iterations.
   *  (default 10)
* *
 -W <class name>
   *  Full name of classifier to boost.
   *  eg: weka.classifiers.bayes.NaiveBayes
* *
 -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String bin = Utils.getOption('B', options); if (bin.length() != 0) { setDiscretizeBin(Integer.parseInt(bin)); } else { setDiscretizeBin(0); } String boostIterations = Utils.getOption('R', options); if (boostIterations.length() != 0) { setMaxIterations(Integer.parseInt(boostIterations)); } else { setMaxIterations(10); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-R"); result.add("" + getMaxIterations()); result.add("-B"); result.add("" + getDiscretizeBin()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxIterationsTipText() { return "The maximum number of boost iterations."; } /** * Set the maximum number of boost iterations * * @param maxIterations the maximum number of boost iterations */ public void setMaxIterations(int maxIterations) { m_MaxIterations = maxIterations; } /** * Get the maximum number of boost iterations * * @return the maximum number of boost iterations */ public int getMaxIterations() { return m_MaxIterations; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String discretizeBinTipText() { return "The number of bins in discretization."; } /** * Set the number of bins in discretization * * @param bin the number of bins in discretization */ public void setDiscretizeBin(int bin) { m_DiscretizeBin = bin; } /** * Get the number of bins in discretization * * @return the number of bins in discretization */ public int getDiscretizeBin() { return m_DiscretizeBin; } private class OptEng extends Optimization { private double[] weights, errs; public void setWeights(double[] w){ weights = w; } public void setErrs(double[] e){ errs = e; } /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function * @throws Exception if result is NaN */ protected double objectiveFunction(double[] x) throws Exception{ double obj=0; for(int i=0; i 0){ m_Filter = new Discretize(); m_Filter.setInputFormat(new Instances(data, 0)); m_Filter.setBins(m_DiscretizeBin); data = Filter.useFilter(data, m_Filter); } // Main algorithm int dataIdx; iterations: for(int m=0; m < m_MaxIterations; m++){ if(m_Debug) System.err.println("\nIteration "+m); // Build a model m_Models[m].buildClassifier(data); // Prediction of each bag double[] err=new double[(int)N], weights=new double[(int)N]; boolean perfect = true, tooWrong=true; dataIdx = 0; for(int n=0; n 0.5) perfect = false; if(err[n] < 0.5) tooWrong = false; } if(perfect || tooWrong){ // No or 100% classification error, cannot find beta if (m == 0) m_Beta[m] = 1.0; else m_Beta[m] = 0; m_NumIterations = m+1; if(m_Debug) System.err.println("No errors"); break iterations; } double[] x = new double[1]; x[0] = 0; double[][] b = new double[2][x.length]; b[0][0] = Double.NaN; b[1][0] = Double.NaN; OptEng opt = new OptEng(); opt.setWeights(weights); opt.setErrs(err); //opt.setDebug(m_Debug); if (m_Debug) System.out.println("Start searching for c... "); x = opt.findArgmin(x, b); while(x==null){ x = opt.getVarbValues(); if (m_Debug) System.out.println("200 iterations finished, not enough!"); x = opt.findArgmin(x, b); } if (m_Debug) System.out.println("Finished."); m_Beta[m] = x[0]; if(m_Debug) System.err.println("c = "+m_Beta[m]); // Stop if error too small or error too big and ignore this model if (Double.isInfinite(m_Beta[m]) || Utils.smOrEq(m_Beta[m], 0) ) { if (m == 0) m_Beta[m] = 1.0; else m_Beta[m] = 0; m_NumIterations = m+1; if(m_Debug) System.err.println("Errors out of range!"); break iterations; } // Update weights of data and class label of wfData dataIdx=0; double totWeights=0; for(int r=0; r 0) insts = Filter.useFilter(insts, m_Filter); for(int y=0; y




© 2015 - 2025 Weber Informatics LLC | Privacy Policy