All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MIDD Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MIDD.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.unsupervised.attribute.Standardize;

import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Re-implement the Diverse Density algorithm, changes the testing procedure.
*
* Oded Maron (1998). Learning from ambiguity.
*
* O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learning. Neural Information Processing Systems. 10. *

* * BibTeX: *

 * @phdthesis{Maron1998,
 *    author = {Oded Maron},
 *    school = {Massachusetts Institute of Technology},
 *    title = {Learning from ambiguity},
 *    year = {1998}
 * }
 * 
 * @article{Maron1998,
 *    author = {O. Maron and T. Lozano-Perez},
 *    journal = {Neural Information Processing Systems},
 *    title = {A Framework for Multiple Instance Learning},
 *    volume = {10},
 *    year = {1998}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  Turn on debugging output.
* *
 -N <num>
 *  Whether to 0=normalize/1=standardize/2=neither.
 *  (default 1=standardize)
* * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @version $Revision: 9144 $ */ public class MIDD extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 4263507733600536168L; /** The index of the class attribute */ protected int m_ClassIndex; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; /** The filter used to standardize/normalize all values. */ protected Filter m_Filter = null; /** Whether to normalize/standardize/neither, default:standardize */ protected int m_filterType = FILTER_STANDARDIZE; /** Normalize training data */ public static final int FILTER_NORMALIZE = 0; /** Standardize training data */ public static final int FILTER_STANDARDIZE = 1; /** No normalization/standardization */ public static final int FILTER_NONE = 2; /** The filter to apply to the training data */ public static final Tag [] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"), new Tag(FILTER_STANDARDIZE, "Standardize training data"), new Tag(FILTER_NONE, "No normalization/standardization"), }; /** The filter used to get rid of missing values. */ protected ReplaceMissingValues m_Missing = new ReplaceMissingValues(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Re-implement the Diverse Density algorithm, changes the testing " + "procedure.\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "Oded Maron"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "Learning from ambiguity"); result.setValue(Field.SCHOOL, "Massachusetts Institute of Technology"); additional = result.add(Type.ARTICLE); additional.setValue(Field.AUTHOR, "O. Maron and T. Lozano-Perez"); additional.setValue(Field.YEAR, "1998"); additional.setValue(Field.TITLE, "A Framework for Multiple Instance Learning"); additional.setValue(Field.JOURNAL, "Neural Information Processing Systems"); additional.setValue(Field.VOLUME, "10"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tWhether to 0=normalize/1=standardize/2=neither.\n" + "\t(default 1=standardize)", "N", 1, "-N ")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -D
   *  Turn on debugging output.
* *
 -N <num>
   *  Whether to 0=normalize/1=standardize/2=neither.
   *  (default 1=standardize)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String nString = Utils.getOption('N', options); if (nString.length() != 0) { setFilterType(new SelectedTag(Integer.parseInt(nString), TAGS_FILTER)); } else { setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER)); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); result.add("-N"); result.add("" + m_filterType); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String filterTypeTipText() { return "The filter type for transforming the training data."; } /** * Gets how the training data will be transformed. Will be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @return the filtering mode */ public SelectedTag getFilterType() { return new SelectedTag(m_filterType, TAGS_FILTER); } /** * Sets how the training data will be transformed. Should be one of * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE. * * @param newType the new filtering mode */ public void setFilterType(SelectedTag newType) { if (newType.getTags() == TAGS_FILTER) { m_filterType = newType.getSelectedTag().getID(); } } private class OptEng extends Optimization { /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood for(int i=0; imaxSz){ maxSz=nI; maxSzIdx=new FastVector(1); maxSzIdx.addElement(new Integer(h)); } else if(nI == maxSz) maxSzIdx.addElement(new Integer(h)); } } /* filter the training data */ if (m_filterType == FILTER_STANDARDIZE) m_Filter = new Standardize(); else if (m_filterType == FILTER_NORMALIZE) m_Filter = new Normalize(); else m_Filter = null; if (m_Filter!=null) { m_Filter.setInputFormat(datasets); datasets = Filter.useFilter(datasets, m_Filter); } m_Missing.setInputFormat(datasets); datasets = Filter.useFilter(datasets, m_Missing); int instIndex=0; int start=0; for(int h=0; h--------------"); } } } /** * Computes the distribution for a given exemplar * * @param exmp the exemplar for which distribution is computed * @return the distribution * @throws Exception if the distribution can't be computed successfully */ public double[] distributionForInstance(Instance exmp) throws Exception { // Extract the data Instances ins = exmp.relationalValue(1); if(m_Filter!=null) ins = Filter.useFilter(ins, m_Filter); ins = Filter.useFilter(ins, m_Missing); int nI = ins.numInstances(), nA = ins.numAttributes(); double[][] dat = new double [nI][nA]; for(int j=0; j




© 2015 - 2025 Weber Informatics LLC | Privacy Policy