All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MINND Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * MINND.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import weka.classifiers.Classifier;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Vector;

/** 
 
 * Multiple-Instance Nearest Neighbour with Distribution learner.
*
* It uses gradient descent to find the weight for each dimension of each exeamplar from the starting point of 1.0. In order to avoid overfitting, it uses mean-square function (i.e. the Euclidean distance) to search for the weights.
* It then uses the weights to cleanse the training data. After that it searches for the weights again from the starting points of the weights searched before.
* Finally it uses the most updated weights to cleanse the test exemplar and then finds the nearest neighbour of the test exemplar using partly-weighted Kullback distance. But the variances in the Kullback distance are the ones before cleansing.
*
* For more information see:
*
* Xin Xu (2001). A nearest distribution approach to multiple-instance learning. Hamilton, NZ. *

* * BibTeX: *

 * @misc{Xu2001,
 *    address = {Hamilton, NZ},
 *    author = {Xin Xu},
 *    note = {0657.591B},
 *    school = {University of Waikato},
 *    title = {A nearest distribution approach to multiple-instance learning},
 *    year = {2001}
 * }
 * 
*

* * Valid options are:

* *

 -K <number of neighbours>
 *  Set number of nearest neighbour for prediction
 *  (default 1)
* *
 -S <number of neighbours>
 *  Set number of nearest neighbour for cleansing the training data
 *  (default 1)
* *
 -E <number of neighbours>
 *  Set number of nearest neighbour for cleansing the testing data
 *  (default 1)
* * * @author Xin Xu ([email protected]) * @version $Revision: 9144 $ */ public class MINND extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -4512599203273864994L; /** The number of nearest neighbour for prediction */ protected int m_Neighbour = 1; /** The mean for each attribute of each exemplar */ protected double[][] m_Mean = null; /** The variance for each attribute of each exemplar */ protected double[][] m_Variance = null; /** The dimension of each exemplar, i.e. (numAttributes-2) */ protected int m_Dimension = 0; /** header info of the data */ protected Instances m_Attributes;; /** The class label of each exemplar */ protected double[] m_Class = null; /** The number of class labels in the data */ protected int m_NumClasses = 0; /** The weight of each exemplar */ protected double[] m_Weights = null; /** The very small number representing zero */ static private double m_ZERO = 1.0e-45; /** The learning rate in the gradient descent */ protected double m_Rate = -1; /** The minimum values for numeric attributes. */ private double [] m_MinArray=null; /** The maximum values for numeric attributes. */ private double [] m_MaxArray=null; /** The stopping criteria of gradient descent*/ private double m_STOP = 1.0e-45; /** The weights that alter the dimnesion of each exemplar */ private double[][] m_Change=null; /** The noise data of each exemplar */ private double[][] m_NoiseM = null, m_NoiseV = null, m_ValidM = null, m_ValidV = null; /** The number of nearest neighbour instances in the selection of noises in the training data*/ private int m_Select = 1; /** The number of nearest neighbour exemplars in the selection of noises in the test data */ private int m_Choose = 1; /** The decay rate of learning rate */ private double m_Decay = 0.5; /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Multiple-Instance Nearest Neighbour with Distribution learner.\n\n" + "It uses gradient descent to find the weight for each dimension of " + "each exeamplar from the starting point of 1.0. In order to avoid " + "overfitting, it uses mean-square function (i.e. the Euclidean " + "distance) to search for the weights.\n " + "It then uses the weights to cleanse the training data. After that " + "it searches for the weights again from the starting points of the " + "weights searched before.\n " + "Finally it uses the most updated weights to cleanse the test exemplar " + "and then finds the nearest neighbour of the test exemplar using " + "partly-weighted Kullback distance. But the variances in the Kullback " + "distance are the ones before cleansing.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MISC); result.setValue(Field.AUTHOR, "Xin Xu"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.TITLE, "A nearest distribution approach to multiple-instance learning"); result.setValue(Field.SCHOOL, "University of Waikato"); result.setValue(Field.ADDRESS, "Hamilton, NZ"); result.setValue(Field.NOTE, "0657.591B"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * As normal Nearest Neighbour algorithm does, it's lazy and simply * records the exemplar information (i.e. mean and variance for each * dimension of each exemplar and their classes) when building the model. * There is actually no need to store the exemplars themselves. * * @param exs the training exemplars * @throws Exception if the model cannot be built properly */ public void buildClassifier(Instances exs)throws Exception{ // can classifier handle the data? getCapabilities().testWithFail(exs); // remove instances with missing class Instances newData = new Instances(exs); newData.deleteWithMissingClass(); int numegs = newData.numInstances(); m_Dimension = newData.attribute(1).relation().numAttributes(); m_Attributes = newData.stringFreeStructure(); m_Change = new double[numegs][m_Dimension]; m_NumClasses = exs.numClasses(); m_Mean = new double[numegs][m_Dimension]; m_Variance = new double[numegs][m_Dimension]; m_Class = new double[numegs]; m_Weights = new double[numegs]; m_NoiseM = new double[numegs][m_Dimension]; m_NoiseV = new double[numegs][m_Dimension]; m_ValidM = new double[numegs][m_Dimension]; m_ValidV = new double[numegs][m_Dimension]; m_MinArray = new double[m_Dimension]; m_MaxArray = new double[m_Dimension]; for(int v=0; v < m_Dimension; v++) m_MinArray[v] = m_MaxArray[v] = Double.NaN; for(int w=0; w < numegs; w++){ updateMinMax(newData.instance(w)); } // Scale exemplars Instances data = m_Attributes; for(int x=0; x < numegs; x++){ Instance example = newData.instance(x); example = scale(example); for (int i=0; i m_MaxArray[j]) m_MaxArray[j] = ins.value(j); } } } } } } /** * Scale the given exemplar so that the returned exemplar * has the value of 0 to 1 for each dimension * * @param before the given exemplar * @return the resultant exemplar after scaling * @throws Exception if given exampler cannot be scaled properly */ private Instance scale(Instance before) throws Exception{ Instances afterInsts = before.relationalValue(1).stringFreeStructure(); Instance after = new Instance(before.numAttributes()); after.setDataset(m_Attributes); for(int i=0; i < before.relationalValue(1).numInstances(); i++){ Instance datum = before.relationalValue(1).instance(i); Instance inst = (Instance)datum.copy(); for(int j=0; j < m_Dimension; j++){ if(before.relationalValue(1).attribute(j).isNumeric()) inst.setValue(j, (datum.value(j) - m_MinArray[j])/(m_MaxArray[j] - m_MinArray[j])); } afterInsts.add(inst); } int attValue = after.attribute(1).addRelation(afterInsts); after.setValue(0, before.value( 0)); after.setValue(1, attValue); after.setValue(2, before.value( 2)); return after; } /** * Use gradient descent to distort the MU parameter for * the exemplar. The exemplar can be in the specified row in the * given matrix, which has numExemplar rows and numDimension columns; * or not in the matrix. * * @param row the given row index * @param mean */ public void findWeights(int row, double[][] mean){ double[] neww = new double[m_Dimension]; double[] oldw = new double[m_Dimension]; System.arraycopy(m_Change[row], 0, neww, 0, m_Dimension); //for(int z=0; z 0.0) delta[k] += (var/distance - 1.0) * 0.5 * (X[rowpos][k]-X[i][k]) * (X[rowpos][k]-X[i][k]); } } //System.out.println("???delta: "+delta); return delta; } /** * Compute the target function to minimize in gradient descent * The formula is:
* 1/2*sum[i=1..p](f(X, Xi)-var(Y, Yi))^2

* where p is the number of exemplars and Y is the class label. * In the case of X=MU, f() is the Euclidean distance between two * exemplars together with the related weights and var() is * sqrt(numDimension)*(Y-Yi) where Y-Yi is either 0 (when Y==Yi) * or 1 (Y!=Yi) * * @param x the weights of the exemplar in question * @param rowpos row index of x in X * @param Y the observed class label * @return the result of the target function */ public double target(double[] x, double[][] X, int rowpos, double[] Y){ double y = Y[rowpos], result=0; for(int i=0; i < X.length; i++){ if((i != rowpos) && (X[i] != null)){ double var = (y==Y[i]) ? 0.0 : Math.sqrt((double)m_Dimension - 1); double f=0; for(int j=0; j < m_Dimension; j++) if(Utils.gr(m_Variance[rowpos][j], 0.0)){ f += x[j]*(X[rowpos][j]-X[i][j]) * (X[rowpos][j]-X[i][j]); //System.out.println("i:"+i+" j: "+j+" row: "+rowpos); } f = Math.sqrt(f); //System.out.println("???distance between "+rowpos+" and "+i+": "+f+"|y:"+y+" vs "+Y[i]); if(Double.isInfinite(f)) System.exit(1); result += 0.5 * (f - var) * (f - var); } } //System.out.println("???target: "+result); return result; } /** * Use Kullback Leibler distance to find the nearest neighbours of * the given exemplar. * It also uses K-Nearest Neighbour algorithm to classify the * test exemplar * * @param ex the given test exemplar * @return the classification * @throws Exception if the exemplar could not be classified * successfully */ public double classifyInstance(Instance ex)throws Exception{ ex = scale(ex); double[] var = new double [m_Dimension]; for (int i=0; i= y) insts.add (datum); } after.setValue(0, before.value( 0)); after.setValue(1, after.attribute(1).addRelation(insts)); after.setValue(2, before.value( 2)); return after; } /** * This function calculates the Kullback Leibler distance between * two normal distributions. This distance is always positive. * Kullback Leibler distance = integral{f(X)ln(f(X)/g(X))} * Note that X is a vector. Since we assume dimensions are independent * f(X)(g(X) the same) is actually the product of normal density * functions of each dimensions. Also note that it should be log2 * instead of (ln) in the formula, but we use (ln) simply for computational * convenience. * * The result is as follows, suppose there are P dimensions, and f(X) * is the first distribution and g(X) is the second: * Kullback = sum[1..P](ln(SIGMA2/SIGMA1)) + * sum[1..P](SIGMA1^2 / (2*(SIGMA2^2))) + * sum[1..P]((MU1-MU2)^2 / (2*(SIGMA2^2))) - * P/2 * * @param mu1 mu of the first normal distribution * @param mu2 mu of the second normal distribution * @param var1 variance(SIGMA^2) of the first normal distribution * @param var2 variance(SIGMA^2) of the second normal distribution * @return the Kullback distance of two distributions */ public double kullback(double[] mu1, double[] mu2, double[] var1, double[] var2, int pos){ int p = mu1.length; double result = 0; for(int y=0; y < p; y++){ if((Utils.gr(var1[y], 0)) && (Utils.gr(var2[y], 0))){ result += ((Math.log(Math.sqrt(var2[y]/var1[y]))) + (var1[y] / (2.0*var2[y])) + (m_Change[pos][y] * (mu1[y]-mu2[y])*(mu1[y]-mu2[y]) / (2.0*var2[y])) - 0.5); } } return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tSet number of nearest neighbour for prediction\n" + "\t(default 1)", "K", 1, "-K ")); result.addElement(new Option( "\tSet number of nearest neighbour for cleansing the training data\n" + "\t(default 1)", "S", 1, "-S ")); result.addElement(new Option( "\tSet number of nearest neighbour for cleansing the testing data\n" + "\t(default 1)", "E", 1, "-E ")); return result.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -K <number of neighbours>
   *  Set number of nearest neighbour for prediction
   *  (default 1)
* *
 -S <number of neighbours>
   *  Set number of nearest neighbour for cleansing the training data
   *  (default 1)
* *
 -E <number of neighbours>
   *  Set number of nearest neighbour for cleansing the testing data
   *  (default 1)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception{ setDebug(Utils.getFlag('D', options)); String numNeighbourString = Utils.getOption('K', options); if (numNeighbourString.length() != 0) setNumNeighbours(Integer.parseInt(numNeighbourString)); else setNumNeighbours(1); numNeighbourString = Utils.getOption('S', options); if (numNeighbourString.length() != 0) setNumTrainingNoises(Integer.parseInt(numNeighbourString)); else setNumTrainingNoises(1); numNeighbourString = Utils.getOption('E', options); if (numNeighbourString.length() != 0) setNumTestingNoises(Integer.parseInt(numNeighbourString)); else setNumTestingNoises(1); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); result.add("-K"); result.add("" + getNumNeighbours()); result.add("-S"); result.add("" + getNumTrainingNoises()); result.add("-E"); result.add("" + getNumTestingNoises()); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numNeighboursTipText() { return "The number of nearest neighbours to the estimate the class prediction of test bags."; } /** * Sets the number of nearest neighbours to estimate * the class prediction of tests bags * @param numNeighbour the number of citers */ public void setNumNeighbours(int numNeighbour){ m_Neighbour = numNeighbour; } /** * Returns the number of nearest neighbours to estimate * the class prediction of tests bags * @return the number of neighbours */ public int getNumNeighbours(){ return m_Neighbour; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numTrainingNoisesTipText() { return "The number of nearest neighbour instances in the selection of noises in the training data."; } /** * Sets the number of nearest neighbour instances in the * selection of noises in the training data * * @param numTraining the number of noises in training data */ public void setNumTrainingNoises (int numTraining){ m_Select = numTraining; } /** * Returns the number of nearest neighbour instances in the * selection of noises in the training data * * @return the number of noises in training data */ public int getNumTrainingNoises(){ return m_Select; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numTestingNoisesTipText() { return "The number of nearest neighbour instances in the selection of noises in the test data."; } /** * Returns The number of nearest neighbour instances in the * selection of noises in the test data * @return the number of noises in test data */ public int getNumTestingNoises(){ return m_Choose; } /** * Sets The number of nearest neighbour exemplars in the * selection of noises in the test data * @param numTesting the number of noises in test data */ public void setNumTestingNoises (int numTesting){ m_Choose = numTesting; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9144 $"); } /** * Main method for testing. * * @param args the options for the classifier */ public static void main(String[] args) { runClassifier(new MINND(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy