All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.RandomForest Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    RandomForest.java
 *    Copyright (C) 2001 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.classifiers.meta.Bagging;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
  
 * Class for constructing a forest of random trees.
*
* For more information see:
*
* Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32. *

* * BibTeX: * *

 * @article{Breiman2001,
 *    author = {Leo Breiman},
 *    journal = {Machine Learning},
 *    number = {1},
 *    pages = {5-32},
 *    title = {Random Forests},
 *    volume = {45},
 *    year = {2001}
 * }
 * 
*

* * Valid options are: *

* *

 * -I <number of trees>
 *  Number of trees to build.
 * 
* *
 * -K <number of features>
 *  Number of features to consider (<1=int(logM+1)).
 * 
* *
 * -S
 *  Seed for random number generator.
 *  (default 1)
 * 
* *
 * -depth <num>
 *  The maximum depth of the trees, 0 for unlimited.
 *  (default 0)
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * @author Richard Kirkby ([email protected]) * @version $Revision: 1.13 $ */ public class RandomForest extends Classifier implements OptionHandler, Randomizable, WeightedInstancesHandler, AdditionalMeasureProducer, TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = -2260823972777004705L; /** Number of trees in forest. */ protected int m_numTrees = 10; /** * Number of features to consider in random feature selection. If less than 1 * will use int(logM+1) ) */ protected int m_numFeatures = 0; /** The random seed. */ protected int m_randomSeed = 1; /** Final number of features that were considered in last build. */ protected int m_KValue = 0; /** The bagger. */ protected Bagging m_bagger = null; /** The maximum depth of the trees (0 = unlimited) */ protected int m_MaxDepth = 0; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Class for constructing a forest of random trees.\n\n" + "For more information see: \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Leo Breiman"); result.setValue(Field.YEAR, "2001"); result.setValue(Field.TITLE, "Random Forests"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "45"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "5-32"); return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numTreesTipText() { return "The number of trees to be generated."; } /** * Get the value of numTrees. * * @return Value of numTrees. */ public int getNumTrees() { return m_numTrees; } /** * Set the value of numTrees. * * @param newNumTrees Value to assign to numTrees. */ public void setNumTrees(int newNumTrees) { m_numTrees = newNumTrees; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numFeaturesTipText() { return "The number of attributes to be used in random selection (see RandomTree)."; } /** * Get the number of features used in random selection. * * @return Value of numFeatures. */ public int getNumFeatures() { return m_numFeatures; } /** * Set the number of features to use in random selection. * * @param newNumFeatures Value to assign to numFeatures. */ public void setNumFeatures(int newNumFeatures) { m_numFeatures = newNumFeatures; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "The random number seed to be used."; } /** * Set the seed for random number generation. * * @param seed the seed */ public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ public int getSeed() { return m_randomSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxDepthTipText() { return "The maximum depth of the trees, 0 for unlimited."; } /** * Get the maximum depth of trh tree, 0 for unlimited. * * @return the maximum depth. */ public int getMaxDepth() { return m_MaxDepth; } /** * Set the maximum depth of the tree, 0 for unlimited. * * @param value the maximum depth. */ public void setMaxDepth(int value) { m_MaxDepth = value; } /** * Gets the out of bag error that was calculated as the classifier was built. * * @return the out of bag error */ public double measureOutOfBagError() { if (m_bagger != null) { return m_bagger.measureOutOfBagError(); } else return Double.NaN; } /** * Returns an enumeration of the additional measure names. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(1); newVector.addElement("measureOutOfBagError"); return newVector.elements(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.equalsIgnoreCase("measureOutOfBagError")) { return measureOutOfBagError(); } else { throw new IllegalArgumentException(additionalMeasureName + " not supported (RandomForest)"); } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options */ @Override public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option("\tNumber of trees to build.", "I", 1, "-I ")); newVector.addElement(new Option( "\tNumber of features to consider (<1=int(logM+1)).", "K", 1, "-K ")); newVector.addElement(new Option("\tSeed for random number generator.\n" + "\t(default 1)", "S", 1, "-S")); newVector.addElement(new Option( "\tThe maximum depth of the trees, 0 for unlimited.\n" + "\t(default 0)", "depth", 1, "-depth ")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Gets the current settings of the forest. * * @return an array of strings suitable for passing to setOptions() */ @Override public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-I"); result.add("" + getNumTrees()); result.add("-K"); result.add("" + getNumFeatures()); result.add("-S"); result.add("" + getSeed()); if (getMaxDepth() > 0) { result.add("-depth"); result.add("" + getMaxDepth()); } options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Parses a given list of options. *

* * Valid options are: *

* *

   * -I <number of trees>
   *  Number of trees to build.
   * 
* *
   * -K <number of features>
   *  Number of features to consider (<1=int(logM+1)).
   * 
* *
   * -S
   *  Seed for random number generator.
   *  (default 1)
   * 
* *
   * -depth <num>
   *  The maximum depth of the trees, 0 for unlimited.
   *  (default 0)
   * 
* *
   * -D
   *  If set, classifier is run in debug mode and
   *  may output additional info to the console
   * 
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('I', options); if (tmpStr.length() != 0) { m_numTrees = Integer.parseInt(tmpStr); } else { m_numTrees = 10; } tmpStr = Utils.getOption('K', options); if (tmpStr.length() != 0) { m_numFeatures = Integer.parseInt(tmpStr); } else { m_numFeatures = 0; } tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) { setSeed(Integer.parseInt(tmpStr)); } else { setSeed(1); } tmpStr = Utils.getOption("depth", options); if (tmpStr.length() != 0) { setMaxDepth(Integer.parseInt(tmpStr)); } else { setMaxDepth(0); } super.setOptions(options); Utils.checkForRemainingOptions(options); } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { return new RandomTree().getCapabilities(); } /** * Builds a classifier for a set of instances. * * @param data the instances to train the classifier with * @throws Exception if something goes wrong */ @Override public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); m_bagger = new Bagging(); RandomTree rTree = new RandomTree(); // set up the random tree options m_KValue = m_numFeatures; if (m_KValue < 1) m_KValue = (int) Utils.log2(data.numAttributes()) + 1; rTree.setKValue(m_KValue); rTree.setMaxDepth(getMaxDepth()); // set up the bagger and build the forest m_bagger.setClassifier(rTree); m_bagger.setSeed(m_randomSeed); m_bagger.setNumIterations(m_numTrees); m_bagger.setCalcOutOfBag(true); m_bagger.buildClassifier(data); } /** * Returns the class probability distribution for an instance. * * @param instance the instance to be classified * @return the distribution the forest generates for the instance * @throws Exception if computation fails */ @Override public double[] distributionForInstance(Instance instance) throws Exception { return m_bagger.distributionForInstance(instance); } /** * Outputs a description of this classifier. * * @return a string containing a description of the classifier */ @Override public String toString() { if (m_bagger == null) return "Random forest not built yet"; else return "Random forest of " + m_numTrees + " trees, each constructed while considering " + m_KValue + " random feature" + (m_KValue == 1 ? "" : "s") + ".\n" + "Out of bag error: " + Utils.doubleToString(m_bagger.measureOutOfBagError(), 4) + "\n" + (getMaxDepth() > 0 ? ("Max. depth of trees: " + getMaxDepth() + "\n") : ("")) + "\n"; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 1.13 $"); } /** * Main method for this class. * * @param argv the options */ public static void main(String[] argv) { runClassifier(new RandomForest(), argv); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy