All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Copyright (C) 2004
 *    & Matthias Schubert ([email protected])
 *    & Zhanna Melnikova-Albrecht ([email protected])
 *    & Rainer Holzmann ([email protected])
 */

package weka.clusterers.forOPTICSAndDBScan.DataObjects;

import weka.core.Instance;

/**
 * 

* DataObject.java
* Authors: Rainer Holzmann, Zhanna Melnikova-Albrecht, Matthias Schubert
* Date: Aug 19, 2004
* Time: 5:48:59 PM
* $ Revision 1.4 $
*

* * @author Matthias Schubert ([email protected]) * @author Zhanna Melnikova-Albrecht ([email protected]) * @author Rainer Holzmann ([email protected]) * @version $Revision: 8108 $ */ public interface DataObject { static final int UNCLASSIFIED = -1; static final int NOISE = Integer.MIN_VALUE; static final double UNDEFINED = Integer.MAX_VALUE; // ***************************************************************************************************************** // methods // ***************************************************************************************************************** /** * Compares two DataObjects in respect to their attribute-values * @param dataObject The DataObject, that is compared with this.dataObject * @return Returns true, if the DataObjects correspond in each value, else returns false */ boolean equals(DataObject dataObject); /** * Calculates the distance between dataObject and this.dataObject * @param dataObject The DataObject, that is used for distance-calculation with this.dataObject * @return double-value The distance between dataObject and this.dataObject */ double distance(DataObject dataObject); /** * Returns the original instance * @return originalInstance */ Instance getInstance(); /** * Returns the key for this DataObject * @return key */ String getKey(); /** * Sets the key for this DataObject * @param key The key is represented as string */ void setKey(String key); /** * Sets the clusterID (cluster), to which this DataObject belongs to * @param clusterID Number of the Cluster */ void setClusterLabel(int clusterID); /** * Returns the clusterID, to which this DataObject belongs to * @return clusterID */ int getClusterLabel(); /** * Marks this dataObject as processed * @param processed True, if the DataObject has been already processed, false else */ void setProcessed(boolean processed); /** * Gives information about the status of a dataObject * @return True, if this dataObject has been processed, else false */ boolean isProcessed(); /** * Sets a new coreDistance for this dataObject * @param c_dist coreDistance */ void setCoreDistance(double c_dist); /** * Returns the coreDistance for this dataObject * @return coreDistance */ double getCoreDistance(); /** * Sets a new reachability-distance for this dataObject */ void setReachabilityDistance(double r_dist); /** * Returns the reachabilityDistance for this dataObject */ double getReachabilityDistance(); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy