weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Copyright (C) 2004
* & Matthias Schubert ([email protected])
* & Zhanna Melnikova-Albrecht ([email protected])
* & Rainer Holzmann ([email protected])
*/
package weka.clusterers.forOPTICSAndDBScan.DataObjects;
import weka.core.Instance;
/**
*
* DataObject.java
* Authors: Rainer Holzmann, Zhanna Melnikova-Albrecht, Matthias Schubert
* Date: Aug 19, 2004
* Time: 5:48:59 PM
* $ Revision 1.4 $
*
*
* @author Matthias Schubert ([email protected])
* @author Zhanna Melnikova-Albrecht ([email protected])
* @author Rainer Holzmann ([email protected])
* @version $Revision: 8108 $
*/
public interface DataObject {
static final int UNCLASSIFIED = -1;
static final int NOISE = Integer.MIN_VALUE;
static final double UNDEFINED = Integer.MAX_VALUE;
// *****************************************************************************************************************
// methods
// *****************************************************************************************************************
/**
* Compares two DataObjects in respect to their attribute-values
* @param dataObject The DataObject, that is compared with this.dataObject
* @return Returns true, if the DataObjects correspond in each value, else returns false
*/
boolean equals(DataObject dataObject);
/**
* Calculates the distance between dataObject and this.dataObject
* @param dataObject The DataObject, that is used for distance-calculation with this.dataObject
* @return double-value The distance between dataObject and this.dataObject
*/
double distance(DataObject dataObject);
/**
* Returns the original instance
* @return originalInstance
*/
Instance getInstance();
/**
* Returns the key for this DataObject
* @return key
*/
String getKey();
/**
* Sets the key for this DataObject
* @param key The key is represented as string
*/
void setKey(String key);
/**
* Sets the clusterID (cluster), to which this DataObject belongs to
* @param clusterID Number of the Cluster
*/
void setClusterLabel(int clusterID);
/**
* Returns the clusterID, to which this DataObject belongs to
* @return clusterID
*/
int getClusterLabel();
/**
* Marks this dataObject as processed
* @param processed True, if the DataObject has been already processed, false else
*/
void setProcessed(boolean processed);
/**
* Gives information about the status of a dataObject
* @return True, if this dataObject has been processed, else false
*/
boolean isProcessed();
/**
* Sets a new coreDistance for this dataObject
* @param c_dist coreDistance
*/
void setCoreDistance(double c_dist);
/**
* Returns the coreDistance for this dataObject
* @return coreDistance
*/
double getCoreDistance();
/**
* Sets a new reachability-distance for this dataObject
*/
void setReachabilityDistance(double r_dist);
/**
* Returns the reachabilityDistance for this dataObject
*/
double getReachabilityDistance();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy