All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.matrix.LUDecomposition Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 * This software is a cooperative product of The MathWorks and the National
 * Institute of Standards and Technology (NIST) which has been released to the
 * public domain. Neither The MathWorks nor NIST assumes any responsibility
 * whatsoever for its use by other parties, and makes no guarantees, expressed
 * or implied, about its quality, reliability, or any other characteristic.
 */

/*
 * LUDecomposition.java
 * Copyright (C) 1999 The Mathworks and NIST
 *
 */

package weka.core.matrix;

import weka.core.RevisionHandler;
import weka.core.RevisionUtils;

import java.io.Serializable;

/** 
 * LU Decomposition.
 * 

* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n * unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a * permutation vector piv of length m so that A(piv,:) = L*U. If m < n, * then L is m-by-m and U is m-by-n. *

* The LU decompostion with pivoting always exists, even if the matrix is * singular, so the constructor will never fail. The primary use of the LU * decomposition is in the solution of square systems of simultaneous linear * equations. This will fail if isNonsingular() returns false. *

* Adapted from the JAMA package. * * @author The Mathworks and NIST * @author Fracpete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.4 $ */ public class LUDecomposition implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -2731022568037808629L; /** * Array for internal storage of decomposition. * @serial internal array storage. */ private double[][] LU; /** * Row and column dimensions, and pivot sign. * @serial column dimension. * @serial row dimension. * @serial pivot sign. */ private int m, n, pivsign; /** * Internal storage of pivot vector. * @serial pivot vector. */ private int[] piv; /** * LU Decomposition * @param A Rectangular matrix */ public LUDecomposition(Matrix A) { // Use a "left-looking", dot-product, Crout/Doolittle algorithm. LU = A.getArrayCopy(); m = A.getRowDimension(); n = A.getColumnDimension(); piv = new int[m]; for (int i = 0; i < m; i++) { piv[i] = i; } pivsign = 1; double[] LUrowi; double[] LUcolj = new double[m]; // Outer loop. for (int j = 0; j < n; j++) { // Make a copy of the j-th column to localize references. for (int i = 0; i < m; i++) { LUcolj[i] = LU[i][j]; } // Apply previous transformations. for (int i = 0; i < m; i++) { LUrowi = LU[i]; // Most of the time is spent in the following dot product. int kmax = Math.min(i,j); double s = 0.0; for (int k = 0; k < kmax; k++) { s += LUrowi[k]*LUcolj[k]; } LUrowi[j] = LUcolj[i] -= s; } // Find pivot and exchange if necessary. int p = j; for (int i = j+1; i < m; i++) { if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { p = i; } } if (p != j) { for (int k = 0; k < n; k++) { double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t; } int k = piv[p]; piv[p] = piv[j]; piv[j] = k; pivsign = -pivsign; } // Compute multipliers. if (j < m & LU[j][j] != 0.0) { for (int i = j+1; i < m; i++) { LU[i][j] /= LU[j][j]; } } } } /** * Is the matrix nonsingular? * @return true if U, and hence A, is nonsingular. */ public boolean isNonsingular() { for (int j = 0; j < n; j++) { if (LU[j][j] == 0) return false; } return true; } /** * Return lower triangular factor * @return L */ public Matrix getL() { Matrix X = new Matrix(m,n); double[][] L = X.getArray(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i > j) { L[i][j] = LU[i][j]; } else if (i == j) { L[i][j] = 1.0; } else { L[i][j] = 0.0; } } } return X; } /** * Return upper triangular factor * @return U */ public Matrix getU() { Matrix X = new Matrix(n,n); double[][] U = X.getArray(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i <= j) { U[i][j] = LU[i][j]; } else { U[i][j] = 0.0; } } } return X; } /** * Return pivot permutation vector * @return piv */ public int[] getPivot() { int[] p = new int[m]; for (int i = 0; i < m; i++) { p[i] = piv[i]; } return p; } /** * Return pivot permutation vector as a one-dimensional double array * @return (double) piv */ public double[] getDoublePivot() { double[] vals = new double[m]; for (int i = 0; i < m; i++) { vals[i] = (double) piv[i]; } return vals; } /** * Determinant * @return det(A) * @exception IllegalArgumentException Matrix must be square */ public double det() { if (m != n) { throw new IllegalArgumentException("Matrix must be square."); } double d = (double) pivsign; for (int j = 0; j < n; j++) { d *= LU[j][j]; } return d; } /** * Solve A*X = B * @param B A Matrix with as many rows as A and any number of columns. * @return X so that L*U*X = B(piv,:) * @exception IllegalArgumentException Matrix row dimensions must agree. * @exception RuntimeException Matrix is singular. */ public Matrix solve(Matrix B) { if (B.getRowDimension() != m) { throw new IllegalArgumentException("Matrix row dimensions must agree."); } if (!this.isNonsingular()) { throw new RuntimeException("Matrix is singular."); } // Copy right hand side with pivoting int nx = B.getColumnDimension(); Matrix Xmat = B.getMatrix(piv,0,nx-1); double[][] X = Xmat.getArray(); // Solve L*Y = B(piv,:) for (int k = 0; k < n; k++) { for (int i = k+1; i < n; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*LU[i][k]; } } } // Solve U*X = Y; for (int k = n-1; k >= 0; k--) { for (int j = 0; j < nx; j++) { X[k][j] /= LU[k][k]; } for (int i = 0; i < k; i++) { for (int j = 0; j < nx; j++) { X[i][j] -= X[k][j]*LU[i][k]; } } } return Xmat; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.4 $"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy