All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.DensityBasedClustererSplitEvaluator Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    DensityBasedClustererSplitEvaluator.java
 *    Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
 *
 */


package weka.experiment;

import weka.clusterers.ClusterEvaluation;
import weka.clusterers.Clusterer;
import weka.clusterers.AbstractClusterer;
import weka.clusterers.AbstractDensityBasedClusterer;
import weka.clusterers.DensityBasedClusterer;
import weka.clusterers.EM;
import weka.core.AdditionalMeasureProducer;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;

import java.io.ObjectStreamClass;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

/**
 * A SplitEvaluator that produces results for a density based clusterer.
 *
 * -W classname 
* Specify the full class name of the clusterer to evaluate.

* * @author Mark Hall (mhall{[at]}pentaho{[dot]}org * @version $Revision: 5562 $ */ public class DensityBasedClustererSplitEvaluator implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** Remove the class column (if set) from the data */ protected boolean m_removeClassColumn = true; /** The clusterer used for evaluation */ protected DensityBasedClusterer m_clusterer = new EM(); /** The names of any additional measures to look for in SplitEvaluators */ protected String [] m_additionalMeasures = null; /** Array of booleans corresponding to the measures in m_AdditionalMeasures indicating which of the AdditionalMeasures the current clusterer can produce */ protected boolean [] m_doesProduce = null; /** The number of additional measures that need to be filled in after taking into account column constraints imposed by the final destination for results */ protected int m_numberAdditionalMeasures = 0; /** Holds the statistics for the most recent application of the clusterer */ protected String m_result = null; /** The clusterer options (if any) */ protected String m_clustererOptions = ""; /** The clusterer version */ protected String m_clustererVersion = ""; /** The length of a key */ private static final int KEY_SIZE = 3; /** The length of a result */ private static final int RESULT_SIZE = 6; public DensityBasedClustererSplitEvaluator() { updateOptions(); } /** * Returns a string describing this split evaluator * @return a description of the split evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return " A SplitEvaluator that produces results for a density based clusterer. "; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(1); newVector.addElement(new Option( "\tThe full class name of the density based clusterer.\n" +"\teg: weka.clusterers.EM", "W", 1, "-W ")); if ((m_clusterer != null) && (m_clusterer instanceof OptionHandler)) { newVector.addElement(new Option( "", "", 0, "\nOptions specific to clusterer " + m_clusterer.getClass().getName() + ":")); Enumeration enu = ((OptionHandler)m_clusterer).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. Valid options are:

* * -W classname
* Specify the full class name of the clusterer to evaluate.

* * All option after -- will be passed to the classifier. * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String cName = Utils.getOption('W', options); if (cName.length() == 0) { throw new Exception("A clusterer must be specified with" + " the -W option."); } // Do it first without options, so if an exception is thrown during // the option setting, listOptions will contain options for the actual // Classifier. setClusterer((DensityBasedClusterer)AbstractClusterer.forName(cName, null)); if (getClusterer() instanceof OptionHandler) { ((OptionHandler) getClusterer()) .setOptions(Utils.partitionOptions(options)); updateOptions(); } } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] clustererOptions = new String [0]; if ((m_clusterer != null) && (m_clusterer instanceof OptionHandler)) { clustererOptions = ((OptionHandler)m_clusterer).getOptions(); } String [] options = new String [clustererOptions.length + 3]; int current = 0; if (getClusterer() != null) { options[current++] = "-W"; options[current++] = getClusterer().getClass().getName(); } options[current++] = "--"; System.arraycopy(clustererOptions, 0, options, current, clustererOptions.length); current += clustererOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * Set a list of method names for additional measures to look for * in Classifiers. This could contain many measures (of which only a * subset may be produceable by the current Classifier) if an experiment * is the type that iterates over a set of properties. * @param additionalMeasures a list of method names */ public void setAdditionalMeasures(String [] additionalMeasures) { // System.err.println("ClassifierSplitEvaluator: setting additional measures"); m_additionalMeasures = additionalMeasures; // determine which (if any) of the additional measures this clusterer // can produce if (m_additionalMeasures != null && m_additionalMeasures.length > 0) { m_doesProduce = new boolean [m_additionalMeasures.length]; if (m_clusterer instanceof AdditionalMeasureProducer) { Enumeration en = ((AdditionalMeasureProducer)m_clusterer). enumerateMeasures(); while (en.hasMoreElements()) { String mname = (String)en.nextElement(); for (int j=0;j clusterer"; } result.append(toString()); result.append("Clustering model: \n"+m_clusterer.toString()+'\n'); // append the performance statistics if (m_result != null) { // result.append(m_result); if (m_doesProduce != null) { for (int i=0;i clusterer"; } return result + m_clusterer.getClass().getName() + " " + m_clustererOptions + "(version " + m_clustererVersion + ")"; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5562 $"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy