All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.CostMatrix Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    CostMatrix.java
 *    Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import java.io.LineNumberReader;
import java.io.Reader;
import java.io.Serializable;
import java.io.StreamTokenizer;
import java.io.Writer;
import java.util.Random;
import java.util.StringTokenizer;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.expressionlanguage.common.IfElseMacro;
import weka.core.expressionlanguage.common.JavaMacro;
import weka.core.expressionlanguage.common.MacroDeclarationsCompositor;
import weka.core.expressionlanguage.common.MathFunctions;
import weka.core.expressionlanguage.common.Primitives.DoubleExpression;
import weka.core.expressionlanguage.core.Node;
import weka.core.expressionlanguage.parser.Parser;
import weka.core.expressionlanguage.weka.InstancesHelper;

/**
 * Class for storing and manipulating a misclassification cost matrix. The
 * element at position i,j in the matrix is the penalty for classifying an
 * instance of class j as class i. Cost values can be fixed or computed on a
 * per-instance basis (cost sensitive evaluation only) from the value of an
 * attribute or a mathematical expression involving attribute(s).
*
* * Values in an instance are accessed in an expression by prefixing their index * (starting at 1) with the character 'a'. E.g.
*
* * a1 ˆ 2 * a5 / log(a7 * 4.0)
* * Supported opperators: +, -, *, /, ^, log, abs, cos, exp, sqrt, floor, ceil, * rint, tan, sin, (, ). * * * * * @author Mark Hall * @author Richard Kirkby ([email protected]) * @version $Revision: 11868 $ * @see weka.core.UnsupportedAttributeTypeException */ public class CostMatrix implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -1973792250544554965L; private int m_size; /** [rows][columns] */ protected Object[][] m_matrix; /** The deafult file extension for cost matrix files */ public static String FILE_EXTENSION = ".cost"; /** * Creates a default cost matrix of a particular size. All diagonal values * will be 0 and all non-diagonal values 1. * * @param numOfClasses the number of classes that the cost matrix holds. */ public CostMatrix(int numOfClasses) { m_size = numOfClasses; initialize(); } /** * Creates a cost matrix that is a copy of another. * * @param toCopy the matrix to copy. */ public CostMatrix(CostMatrix toCopy) { this(toCopy.size()); for (int i = 0; i < m_size; i++) { for (int j = 0; j < m_size; j++) { setCell(i, j, toCopy.getCell(i, j)); } } } /** * Initializes the matrix */ public void initialize() { m_matrix = new Object[m_size][m_size]; for (int i = 0; i < m_size; i++) { for (int j = 0; j < m_size; j++) { setCell(i, j, i == j ? new Double(0.0) : new Double(1.0)); } } } /** * The number of rows (and columns) * * @return the size of the matrix */ public int size() { return m_size; } /** * Same as size * * @return the number of columns */ public int numColumns() { return size(); } /** * Same as size * * @return the number of rows */ public int numRows() { return size(); } private boolean replaceStrings(Instances dataset) throws Exception { boolean nonDouble = false; for (int i = 0; i < m_size; i++) { for (int j = 0; j < m_size; j++) { if (getCell(i, j) instanceof String) { setCell(i, j, new InstanceExpression((String) getCell(i, j), dataset)); nonDouble = true; } else if (getCell(i, j) instanceof InstanceExpression) { nonDouble = true; } } } return nonDouble; } /** * Applies the cost matrix to a set of instances. If a random number generator * is supplied the instances will be resampled, otherwise they will be * rewighted. Adapted from code once sitting in Instances.java * * @param data the instances to reweight. * @param random a random number generator for resampling, if null then * instances are rewighted. * @return a new dataset reflecting the cost of misclassification. * @exception Exception if the data has no class or the matrix in * inappropriate. */ public Instances applyCostMatrix(Instances data, Random random) throws Exception { double sumOfWeightFactors = 0, sumOfMissClassWeights, sumOfWeights; double[] weightOfInstancesInClass, weightFactor, weightOfInstances; if (data.classIndex() < 0) { throw new Exception("Class index is not set!"); } if (size() != data.numClasses()) { throw new Exception("Misclassification cost matrix has wrong format!"); } // are there any non-fixed, per-instance costs defined in the matrix? if (replaceStrings(data)) { // could reweight in the two class case if (data.classAttribute().numValues() > 2) { throw new Exception("Can't resample/reweight instances using " + "non-fixed cost values when there are more " + "than two classes!"); } else { // Store new weights weightOfInstances = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { Instance inst = data.instance(i); int classValIndex = (int) inst.classValue(); double factor = 1.0; Object element = (classValIndex == 0) ? getCell(classValIndex, 1) : getCell( classValIndex, 0); if (element instanceof Double) { factor = ((Double) element).doubleValue(); } else { factor = ((InstanceExpression) element).evaluate(inst); } weightOfInstances[i] = inst.weight() * factor; /* * System.err.println("Multiplying " + * inst.classAttribute().value((int)inst.classValue()) +" by factor " * + factor); */ } // Change instances weight or do resampling if (random != null) { return data.resampleWithWeights(random, weightOfInstances); } else { Instances instances = new Instances(data); for (int i = 0; i < data.numInstances(); i++) { instances.instance(i).setWeight(weightOfInstances[i]); } return instances; } } } weightFactor = new double[data.numClasses()]; weightOfInstancesInClass = new double[data.numClasses()]; for (int j = 0; j < data.numInstances(); j++) { weightOfInstancesInClass[(int) data.instance(j).classValue()] += data.instance(j).weight(); } sumOfWeights = Utils.sum(weightOfInstancesInClass); // normalize the matrix if not already for (int i = 0; i < m_size; i++) { if (!Utils.eq(((Double) getCell(i, i)).doubleValue(), 0)) { CostMatrix normMatrix = new CostMatrix(this); normMatrix.normalize(); return normMatrix.applyCostMatrix(data, random); } } for (int i = 0; i < data.numClasses(); i++) { // Using Kai Ming Ting's formula for deriving weights for // the classes and Breiman's heuristic for multiclass // problems. sumOfMissClassWeights = 0; for (int j = 0; j < data.numClasses(); j++) { if (Utils.sm(((Double) getCell(i, j)).doubleValue(), 0)) { throw new Exception("Neg. weights in misclassification " + "cost matrix!"); } sumOfMissClassWeights += ((Double) getCell(i, j)).doubleValue(); } weightFactor[i] = sumOfMissClassWeights * sumOfWeights; sumOfWeightFactors += sumOfMissClassWeights * weightOfInstancesInClass[i]; } for (int i = 0; i < data.numClasses(); i++) { weightFactor[i] /= sumOfWeightFactors; } // Store new weights weightOfInstances = new double[data.numInstances()]; for (int i = 0; i < data.numInstances(); i++) { weightOfInstances[i] = data.instance(i).weight() * weightFactor[(int) data.instance(i).classValue()]; } // Change instances weight or do resampling if (random != null) { return data.resampleWithWeights(random, weightOfInstances); } else { Instances instances = new Instances(data); for (int i = 0; i < data.numInstances(); i++) { instances.instance(i).setWeight(weightOfInstances[i]); } return instances; } } /** * Calculates the expected misclassification cost for each possible class * value, given class probability estimates. * * @param classProbs the class probability estimates. * @return the expected costs. * @exception Exception if the wrong number of class probabilities is * supplied. */ public double[] expectedCosts(double[] classProbs) throws Exception { if (classProbs.length != m_size) { throw new Exception("Length of probability estimates don't " + "match cost matrix"); } double[] costs = new double[m_size]; for (int x = 0; x < m_size; x++) { for (int y = 0; y < m_size; y++) { Object element = getCell(y, x); if (!(element instanceof Double)) { throw new Exception("Can't use non-fixed costs in " + "computing expected costs."); } costs[x] += classProbs[y] * ((Double) element).doubleValue(); } } return costs; } /** * Calculates the expected misclassification cost for each possible class * value, given class probability estimates. * * @param classProbs the class probability estimates. * @param inst the current instance for which the class probabilites apply. Is * used for computing any non-fixed cost values. * @return the expected costs. * @exception Exception if something goes wrong */ public double[] expectedCosts(double[] classProbs, Instance inst) throws Exception { if (classProbs.length != m_size) { throw new Exception("Length of probability estimates don't " + "match cost matrix"); } if (!replaceStrings(inst.dataset())) { return expectedCosts(classProbs); } double[] costs = new double[m_size]; for (int x = 0; x < m_size; x++) { for (int y = 0; y < m_size; y++) { Object element = getCell(y, x); double costVal; if (!(element instanceof Double)) { costVal = ((InstanceExpression) element).evaluate(inst); } else { costVal = ((Double) element).doubleValue(); } costs[x] += classProbs[y] * costVal; } } return costs; } /** * Gets the maximum cost for a particular class value. * * @param classVal the class value. * @return the maximum cost. * @exception Exception if cost matrix contains non-fixed costs */ public double getMaxCost(int classVal) throws Exception { double maxCost = Double.NEGATIVE_INFINITY; for (int i = 0; i < m_size; i++) { Object element = getCell(classVal, i); if (!(element instanceof Double)) { throw new Exception("Can't use non-fixed costs when " + "getting max cost."); } double cost = ((Double) element).doubleValue(); if (cost > maxCost) maxCost = cost; } return maxCost; } /** * Gets the maximum cost for a particular class value. * * @param classVal the class value. * @return the maximum cost. * @exception Exception if cost matrix contains non-fixed costs */ public double getMaxCost(int classVal, Instance inst) throws Exception { if (!replaceStrings(inst.dataset())) { return getMaxCost(classVal); } double maxCost = Double.NEGATIVE_INFINITY; double cost; for (int i = 0; i < m_size; i++) { Object element = getCell(classVal, i); if (!(element instanceof Double)) { cost = ((InstanceExpression) element).evaluate(inst); } else { cost = ((Double) element).doubleValue(); } if (cost > maxCost) maxCost = cost; } return maxCost; } /** * Normalizes the matrix so that the diagonal contains zeros. * */ public void normalize() { for (int y = 0; y < m_size; y++) { double diag = ((Double) getCell(y, y)).doubleValue(); for (int x = 0; x < m_size; x++) { setCell(x, y, new Double(((Double) getCell(x, y)).doubleValue() - diag)); } } } /** * Loads a cost matrix in the old format from a reader. Adapted from code once * sitting in Instances.java * * @param reader the reader to get the values from. * @exception Exception if the matrix cannot be read correctly. */ public void readOldFormat(Reader reader) throws Exception { StreamTokenizer tokenizer; int currentToken; double firstIndex, secondIndex, weight; tokenizer = new StreamTokenizer(reader); initialize(); tokenizer.commentChar('%'); tokenizer.eolIsSignificant(true); while (StreamTokenizer.TT_EOF != (currentToken = tokenizer.nextToken())) { // Skip empty lines if (currentToken == StreamTokenizer.TT_EOL) { continue; } // Get index of first class. if (currentToken != StreamTokenizer.TT_NUMBER) { throw new Exception("Only numbers and comments allowed " + "in cost file!"); } firstIndex = tokenizer.nval; if (!Utils.eq((int) firstIndex, firstIndex)) { throw new Exception("First number in line has to be " + "index of a class!"); } if ((int) firstIndex >= size()) { throw new Exception("Class index out of range!"); } // Get index of second class. if (StreamTokenizer.TT_EOF == (currentToken = tokenizer.nextToken())) { throw new Exception("Premature end of file!"); } if (currentToken == StreamTokenizer.TT_EOL) { throw new Exception("Premature end of line!"); } if (currentToken != StreamTokenizer.TT_NUMBER) { throw new Exception("Only numbers and comments allowed " + "in cost file!"); } secondIndex = tokenizer.nval; if (!Utils.eq((int) secondIndex, secondIndex)) { throw new Exception("Second number in line has to be " + "index of a class!"); } if ((int) secondIndex >= size()) { throw new Exception("Class index out of range!"); } if ((int) secondIndex == (int) firstIndex) { throw new Exception("Diagonal of cost matrix non-zero!"); } // Get cost factor. if (StreamTokenizer.TT_EOF == (currentToken = tokenizer.nextToken())) { throw new Exception("Premature end of file!"); } if (currentToken == StreamTokenizer.TT_EOL) { throw new Exception("Premature end of line!"); } if (currentToken != StreamTokenizer.TT_NUMBER) { throw new Exception("Only numbers and comments allowed " + "in cost file!"); } weight = tokenizer.nval; if (!Utils.gr(weight, 0)) { throw new Exception("Only positive weights allowed!"); } setCell((int) firstIndex, (int) secondIndex, new Double(weight)); } } /** * Reads a matrix from a reader. The first line in the file should contain the * number of rows and columns. Subsequent lines contain elements of the * matrix. (FracPete: taken from old weka.core.Matrix class) * * @param reader the reader containing the matrix * @throws Exception if an error occurs * @see #write(Writer) */ public CostMatrix(Reader reader) throws Exception { LineNumberReader lnr = new LineNumberReader(reader); String line; int currentRow = -1; while ((line = lnr.readLine()) != null) { // Comments if (line.startsWith("%")) { continue; } StringTokenizer st = new StringTokenizer(line); // Ignore blank lines if (!st.hasMoreTokens()) { continue; } if (currentRow < 0) { int rows = Integer.parseInt(st.nextToken()); if (!st.hasMoreTokens()) { throw new Exception("Line " + lnr.getLineNumber() + ": expected number of columns"); } int cols = Integer.parseInt(st.nextToken()); if (rows != cols) { throw new Exception("Trying to create a non-square cost " + "matrix"); } // m_matrix = new Object[rows][cols]; m_size = rows; initialize(); currentRow++; continue; } else { if (currentRow == m_size) { throw new Exception("Line " + lnr.getLineNumber() + ": too many rows provided"); } for (int i = 0; i < m_size; i++) { if (!st.hasMoreTokens()) { throw new Exception("Line " + lnr.getLineNumber() + ": too few matrix elements provided"); } String nextTok = st.nextToken(); // try to parse as a double first Double val = null; try { val = new Double(nextTok); } catch (Exception ex) { val = null; } if (val == null) { setCell(currentRow, i, nextTok); } else { setCell(currentRow, i, val); } } currentRow++; } } if (currentRow == -1) { throw new Exception("Line " + lnr.getLineNumber() + ": expected number of rows"); } else if (currentRow != m_size) { throw new Exception("Line " + lnr.getLineNumber() + ": too few rows provided"); } } /** * Writes out a matrix. The format can be read via the CostMatrix(Reader) * constructor. (FracPete: taken from old weka.core.Matrix class) * * @param w the output Writer * @throws Exception if an error occurs */ public void write(Writer w) throws Exception { w.write("% Rows\tColumns\n"); w.write("" + m_size + "\t" + m_size + "\n"); w.write("% Matrix elements\n"); for (int i = 0; i < m_size; i++) { for (int j = 0; j < m_size; j++) { w.write("" + getCell(i, j) + "\t"); } w.write("\n"); } w.flush(); } /** * converts the Matrix into a single line Matlab string: matrix is enclosed by * parentheses, rows are separated by semicolon and single cells by blanks, * e.g., [1 2; 3 4]. * * @return the matrix in Matlab single line format */ public String toMatlab() { StringBuffer result; int i; int n; result = new StringBuffer(); result.append("["); for (i = 0; i < m_size; i++) { if (i > 0) { result.append("; "); } for (n = 0; n < m_size; n++) { if (n > 0) { result.append(" "); } result.append(getCell(i, n)); } } result.append("]"); return result.toString(); } /** * creates a matrix from the given Matlab string. * * @param matlab the matrix in matlab format * @return the matrix represented by the given string * @see #toMatlab() */ public static CostMatrix parseMatlab(String matlab) throws Exception { StringTokenizer tokRow; StringTokenizer tokCol; int rows; int cols; CostMatrix result; String cells; // get content cells = matlab.substring(matlab.indexOf("[") + 1, matlab.indexOf("]")).trim(); // determine dimenions tokRow = new StringTokenizer(cells, ";"); rows = tokRow.countTokens(); tokCol = new StringTokenizer(tokRow.nextToken(), " "); cols = tokCol.countTokens(); // fill matrix result = new CostMatrix(rows); tokRow = new StringTokenizer(cells, ";"); rows = 0; while (tokRow.hasMoreTokens()) { tokCol = new StringTokenizer(tokRow.nextToken(), " "); cols = 0; while (tokCol.hasMoreTokens()) { // is it a number String current = tokCol.nextToken(); try { double val = Double.parseDouble(current); result.setCell(rows, cols, new Double(val)); } catch (NumberFormatException e) { // must be an expression result.setCell(rows, cols, current); } cols++; } rows++; } return result; } /** * Set the value of a particular cell in the matrix * * @param rowIndex the row * @param columnIndex the column * @param value the value to set */ public final void setCell(int rowIndex, int columnIndex, Object value) { m_matrix[rowIndex][columnIndex] = value; } /** * Return the contents of a particular cell. Note: this method returns the * Object stored at a particular cell. * * @param rowIndex the row * @param columnIndex the column * @return the value at the cell */ public final Object getCell(int rowIndex, int columnIndex) { return m_matrix[rowIndex][columnIndex]; } /** * Return the value of a cell as a double (for legacy code) * * @param rowIndex the row * @param columnIndex the column * @return the value at a particular cell as a double * @exception Exception if the value is not a double */ public final double getElement(int rowIndex, int columnIndex) throws Exception { if (!(m_matrix[rowIndex][columnIndex] instanceof Double)) { throw new Exception("Cost matrix contains non-fixed costs!"); } return ((Double) m_matrix[rowIndex][columnIndex]).doubleValue(); } /** * Return the value of a cell as a double. Computes the value for non-fixed * costs using the supplied Instance * * @param rowIndex the row * @param columnIndex the column * @return the value from a particular cell * @exception Exception if something goes wrong */ public final double getElement(int rowIndex, int columnIndex, Instance inst) throws Exception { if (m_matrix[rowIndex][columnIndex] instanceof Double) { return ((Double) m_matrix[rowIndex][columnIndex]).doubleValue(); } else if (m_matrix[rowIndex][columnIndex] instanceof String) { replaceStrings(inst.dataset()); } return ((InstanceExpression) m_matrix[rowIndex][columnIndex]) .evaluate(inst); } /** * Set the value of a cell as a double * * @param rowIndex the row * @param columnIndex the column * @param value the value (double) to set */ public final void setElement(int rowIndex, int columnIndex, double value) { m_matrix[rowIndex][columnIndex] = new Double(value); } /** * Converts a matrix to a string. (FracPete: taken from old weka.core.Matrix * class) * * @return the converted string */ @Override public String toString() { // Determine the width required for the maximum element, // and check for fractional display requirement. double maxval = 0; boolean fractional = false; Object element = null; int widthNumber = 0; int widthExpression = 0; for (int i = 0; i < size(); i++) { for (int j = 0; j < size(); j++) { element = getCell(i, j); if (element instanceof Double) { double current = ((Double) element).doubleValue(); if (current < 0) current *= -11; if (current > maxval) maxval = current; double fract = Math.abs(current - Math.rint(current)); if (!fractional && ((Math.log(fract) / Math.log(10)) >= -2)) { fractional = true; } } else { if (element.toString().length() > widthExpression) { widthExpression = element.toString().length(); } } } } if (maxval > 0) { widthNumber = (int) (Math.log(maxval) / Math.log(10) + (fractional ? 4 : 1)); } int width = (widthNumber > widthExpression) ? widthNumber : widthExpression; StringBuffer text = new StringBuffer(); for (int i = 0; i < size(); i++) { for (int j = 0; j < size(); j++) { element = getCell(i, j); if (element instanceof Double) { text.append(" ").append( Utils.doubleToString(((Double) element).doubleValue(), width, (fractional ? 2 : 0))); } else { int diff = width - element.toString().length(); if (diff > 0) { int left = diff % 2; left += diff / 2; String temp = Utils.padLeft(element.toString(), element.toString().length() + left); temp = Utils.padRight(temp, width); text.append(" ").append(temp); } else { text.append(" ").append(element.toString()); } } } text.append("\n"); } return text.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11868 $"); } private static class InstanceExpression { private final DoubleExpression m_compiledExpression; private final String m_expression; private final InstancesHelper m_instancesHelper; public InstanceExpression(String expression, Instances dataset) throws Exception { this.m_expression = expression; m_instancesHelper = new InstancesHelper(dataset); Node node = Parser.parse( // expression expression, // variables m_instancesHelper, // marcos new MacroDeclarationsCompositor(m_instancesHelper, new MathFunctions(), new IfElseMacro(), new JavaMacro())); if (!(node instanceof DoubleExpression)) throw new Exception("Expression must be of double type!"); m_compiledExpression = (DoubleExpression) node; } public double evaluate(Instance inst) { m_instancesHelper.setInstance(inst); return m_compiledExpression.evaluate(); } @Override public String toString() { return m_expression; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy