All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.CheckClusterer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * CheckClusterer.java
 * Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.clusterers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.core.CheckScheme;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializationHelper;
import weka.core.TestInstances;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 * Class for examining the capabilities and finding problems with clusterers. If
 * you implement a clusterer using the WEKA.libraries, you should run the checks
 * on it to ensure robustness and correct operation. Passing all the tests of
 * this object does not mean bugs in the clusterer don't exist, but this will
 * help find some common ones.
 * 

* * Typical usage: *

* java weka.clusterers.CheckClusterer -W clusterer_name * -- clusterer_options *

* * CheckClusterer reports on the following: *

    *
  • Clusterer abilities *
      *
    • Possible command line options to the clusterer
    • *
    • Whether the clusterer can predict nominal, numeric, string, date or * relational class attributes.
    • *
    • Whether the clusterer can handle numeric predictor attributes
    • *
    • Whether the clusterer can handle nominal predictor attributes
    • *
    • Whether the clusterer can handle string predictor attributes
    • *
    • Whether the clusterer can handle date predictor attributes
    • *
    • Whether the clusterer can handle relational predictor attributes
    • *
    • Whether the clusterer can handle multi-instance data
    • *
    • Whether the clusterer can handle missing predictor values
    • *
    • Whether the clusterer can handle instance weights
    • *
    *
  • *
  • Correct functioning *
      *
    • Correct initialisation during buildClusterer (i.e. no result changes when * buildClusterer called repeatedly)
    • *
    • Whether the clusterer alters the data pased to it (number of instances, * instance order, instance weights, etc)
    • *
    *
  • *
  • Degenerate cases *
      *
    • building clusterer with zero training instances
    • *
    • all but one predictor attribute values missing
    • *
    • all predictor attribute values missing
    • *
    • all but one class values missing
    • *
    • all class values missing
    • *
    *
  • *
* Running CheckClusterer with the debug option set will output the training * dataset for any failed tests. *

* * The weka.clusterers.AbstractClustererTest uses this class to * test all the clusterers. Any changes here, have to be checked in that * abstract test class, too. *

* * Valid options are: *

* *

 * -D
 *  Turn on debugging output.
 * 
* *
 * -S
 *  Silent mode - prints nothing to stdout.
 * 
* *
 * -N <num>
 *  The number of instances in the datasets (default 20).
 * 
* *
 * -nominal <num>
 *  The number of nominal attributes (default 2).
 * 
* *
 * -nominal-values <num>
 *  The number of values for nominal attributes (default 1).
 * 
* *
 * -numeric <num>
 *  The number of numeric attributes (default 1).
 * 
* *
 * -string <num>
 *  The number of string attributes (default 1).
 * 
* *
 * -date <num>
 *  The number of date attributes (default 1).
 * 
* *
 * -relational <num>
 *  The number of relational attributes (default 1).
 * 
* *
 * -num-instances-relational <num>
 *  The number of instances in relational/bag attributes (default 10).
 * 
* *
 * -words <comma-separated-list>
 *  The words to use in string attributes.
 * 
* *
 * -word-separators <chars>
 *  The word separators to use in string attributes.
 * 
* *
 * -W
 *  Full name of the clusterer analyzed.
 *  eg: weka.clusterers.SimpleKMeans
 *  (default weka.clusterers.SimpleKMeans)
 * 
* *
 * Options specific to clusterer weka.clusterers.SimpleKMeans:
 * 
* *
 * -N <num>
 *  number of clusters.
 *  (default 2).
 * 
* *
 * -V
 *  Display std. deviations for centroids.
 * 
* *
 * -M
 *  Replace missing values with mean/mode.
 * 
* *
 * -S <num>
 *  Random number seed.
 *  (default 10)
 * 
* * * * Options after -- are passed to the designated clusterer. *

* * @author Len Trigg ([email protected]) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 11451 $ * @see TestInstances */ public class CheckClusterer extends CheckScheme { /* * Note about test methods: - methods return array of booleans - first index: * success or not - second index: acceptable or not (e.g., Exception is OK) * * FracPete (fracpete at waikato dot ac dot nz) */ /*** The clusterer to be examined */ protected Clusterer m_Clusterer = new SimpleKMeans(); /** * default constructor */ public CheckClusterer() { super(); setNumInstances(40); } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration

* * Valid options are: *

* *

   * -D
   *  Turn on debugging output.
   * 
* *
   * -S
   *  Silent mode - prints nothing to stdout.
   * 
* *
   * -N <num>
   *  The number of instances in the datasets (default 20).
   * 
* *
   * -nominal <num>
   *  The number of nominal attributes (default 2).
   * 
* *
   * -nominal-values <num>
   *  The number of values for nominal attributes (default 1).
   * 
* *
   * -numeric <num>
   *  The number of numeric attributes (default 1).
   * 
* *
   * -string <num>
   *  The number of string attributes (default 1).
   * 
* *
   * -date <num>
   *  The number of date attributes (default 1).
   * 
* *
   * -relational <num>
   *  The number of relational attributes (default 1).
   * 
* *
   * -num-instances-relational <num>
   *  The number of instances in relational/bag attributes (default 10).
   * 
* *
   * -words <comma-separated-list>
   *  The words to use in string attributes.
   * 
* *
   * -word-separators <chars>
   *  The word separators to use in string attributes.
   * 
* *
   * -W
   *  Full name of the clusterer analyzed.
   *  eg: weka.clusterers.SimpleKMeans
   *  (default weka.clusterers.SimpleKMeans)
   * 
* *
   * Options specific to clusterer weka.clusterers.SimpleKMeans:
   * 
* *
   * -N <num>
   *  number of clusters.
   *  (default 2).
   * 
* *
   * -V
   *  Display std. deviations for centroids.
   * 
* *
   * -M
   *  Replace missing values with mean/mode.
   * 
* *
   * -S <num>
   *  Random number seed.
   *  (default 10)
   * 
* * * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('N', options); if (tmpStr.length() != 0) { setNumInstances(Integer.parseInt(tmpStr)); } else { setNumInstances(40); } super.setOptions(options); tmpStr = Utils.getOption('W', options); if (tmpStr.length() == 0) { tmpStr = weka.clusterers.SimpleKMeans.class.getName(); } setClusterer((Clusterer) forName("weka.clusterers", Clusterer.class, tmpStr, Utils.partitionOptions(options))); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the CheckClusterer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector result = new Vector(); if (getClusterer() != null) { result.add("-W"); result.add(getClusterer().getClass().getName()); } Collections.addAll(result, super.getOptions()); if ((m_Clusterer != null) && (m_Clusterer instanceof OptionHandler)) { String[] options = ((OptionHandler) m_Clusterer).getOptions(); if (options.length > 0) { result.add("--"); Collections.addAll(result, options); } } return result.toArray(new String[result.size()]); } /** * Begin the tests, reporting results to System.out */ @Override public void doTests() { if (getClusterer() == null) { println("\n=== No clusterer set ==="); return; } println("\n=== Check on Clusterer: " + getClusterer().getClass().getName() + " ===\n"); // Start tests println("--> Checking for interfaces"); canTakeOptions(); boolean updateable = updateableClusterer()[0]; boolean weightedInstancesHandler = weightedInstancesHandler()[0]; boolean multiInstanceHandler = multiInstanceHandler()[0]; println("--> Clusterer tests"); declaresSerialVersionUID(); runTests(weightedInstancesHandler, multiInstanceHandler, updateable); } /** * Set the clusterer for testing. * * @param newClusterer the Clusterer to use. */ public void setClusterer(Clusterer newClusterer) { m_Clusterer = newClusterer; } /** * Get the clusterer used as the clusterer * * @return the clusterer used as the clusterer */ public Clusterer getClusterer() { return m_Clusterer; } /** * Run a battery of tests * * @param weighted true if the clusterer says it handles weights * @param multiInstance true if the clusterer is a multi-instance clusterer * @param updateable true if the classifier is updateable */ protected void runTests(boolean weighted, boolean multiInstance, boolean updateable) { boolean PNom = canPredict(true, false, false, false, false, multiInstance)[0]; boolean PNum = canPredict(false, true, false, false, false, multiInstance)[0]; boolean PStr = canPredict(false, false, true, false, false, multiInstance)[0]; boolean PDat = canPredict(false, false, false, true, false, multiInstance)[0]; boolean PRel; if (!multiInstance) { PRel = canPredict(false, false, false, false, true, multiInstance)[0]; } else { PRel = false; } if (PNom || PNum || PStr || PDat || PRel) { if (weighted) { instanceWeights(PNom, PNum, PStr, PDat, PRel, multiInstance); } canHandleZeroTraining(PNom, PNum, PStr, PDat, PRel, multiInstance); boolean handleMissingPredictors = canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, true, 20)[0]; if (handleMissingPredictors) { canHandleMissing(PNom, PNum, PStr, PDat, PRel, multiInstance, true, 100); } correctBuildInitialisation(PNom, PNum, PStr, PDat, PRel, multiInstance); datasetIntegrity(PNom, PNum, PStr, PDat, PRel, multiInstance, handleMissingPredictors); if (updateable) { updatingEquality(PNom, PNum, PStr, PDat, PRel, multiInstance); } } } /** * Checks whether the scheme can take command line options. * * @return index 0 is true if the clusterer can take options */ protected boolean[] canTakeOptions() { boolean[] result = new boolean[2]; print("options..."); if (m_Clusterer instanceof OptionHandler) { println("yes"); if (m_Debug) { println("\n=== Full report ==="); Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy