weka.core.matrix.Matrix Maven / Gradle / Ivy
Show all versions of weka-stable Show documentation
/*
* This software is a cooperative product of The MathWorks and the National
* Institute of Standards and Technology (NIST) which has been released to the
* public domain. Neither The MathWorks nor NIST assumes any responsibility
* whatsoever for its use by other parties, and makes no guarantees, expressed
* or implied, about its quality, reliability, or any other characteristic.
*/
/*
* Matrix.java
* Copyright (C) 1999 The Mathworks and NIST and 2005 University of Waikato,
* Hamilton, New Zealand
*
*/
package weka.core.matrix;
import java.io.BufferedReader;
import java.io.LineNumberReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.Serializable;
import java.io.StreamTokenizer;
import java.io.StringReader;
import java.io.StringWriter;
import java.io.Writer;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.util.Locale;
import java.util.StringTokenizer;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Jama = Java Matrix class.
*
* The Java Matrix Class provides the fundamental operations of numerical linear
* algebra. Various constructors create Matrices from two dimensional arrays of
* double precision floating point numbers. Various "gets" and "sets" provide
* access to submatrices and matrix elements. Several methods implement basic
* matrix arithmetic, including matrix addition and multiplication, matrix
* norms, and element-by-element array operations. Methods for reading and
* printing matrices are also included. All the operations in this version of
* the Matrix Class involve real matrices. Complex matrices may be handled in a
* future version.
*
* Five fundamental matrix decompositions, which consist of pairs or triples of
* matrices, permutation vectors, and the like, produce results in five
* decomposition classes. These decompositions are accessed by the Matrix class
* to compute solutions of simultaneous linear equations, determinants, inverses
* and other matrix functions. The five decompositions are:
*
*
* - Cholesky Decomposition of symmetric, positive definite matrices.
*
- LU Decomposition of rectangular matrices.
*
- QR Decomposition of rectangular matrices.
*
- Singular Value Decomposition of rectangular matrices.
*
- Eigenvalue Decomposition of both symmetric and nonsymmetric square
* matrices.
*
*
* - Example of use:
*
*
- Solve a linear system A x = b and compute the residual norm, ||b - A x||.
*
*
*
* double[][] vals = { { 1., 2., 3 }, { 4., 5., 6. }, { 7., 8., 10. } };
* Matrix A = new Matrix(vals);
* Matrix b = Matrix.random(3, 1);
* Matrix x = A.solve(b);
* Matrix r = A.times(x).minus(b);
* double rnorm = r.normInf();
*
*
*
*
*
* Adapted from the JAMA package. Additional methods are tagged with the
* @author
tag.
*
* @author The Mathworks and NIST
* @author Fracpete (fracpete at waikato dot ac dot nz)
* @version $Revision: 10203 $
*/
public class Matrix implements Cloneable, Serializable, RevisionHandler {
/** for serialization */
private static final long serialVersionUID = 7856794138418366180L;
/**
* Array for internal storage of elements.
*
* @serial internal array storage.
*/
protected double[][] A;
/**
* Row and column dimensions.
*
* @serial row dimension.
* @serial column dimension.
*/
protected int m, n;
/**
* Construct an m-by-n matrix of zeros.
*
* @param m Number of rows.
* @param n Number of colums.
*/
public Matrix(int m, int n) {
this.m = m;
this.n = n;
A = new double[m][n];
}
/**
* Construct an m-by-n constant matrix.
*
* @param m Number of rows.
* @param n Number of colums.
* @param s Fill the matrix with this scalar value.
*/
public Matrix(int m, int n, double s) {
this.m = m;
this.n = n;
A = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = s;
}
}
}
/**
* Construct a matrix from a 2-D array.
*
* @param A Two-dimensional array of doubles.
* @throws IllegalArgumentException All rows must have the same length
* @see #constructWithCopy
*/
public Matrix(double[][] A) {
m = A.length;
n = A[0].length;
for (int i = 0; i < m; i++) {
if (A[i].length != n) {
throw new IllegalArgumentException(
"All rows must have the same length.");
}
}
this.A = A;
}
/**
* Construct a matrix quickly without checking arguments.
*
* @param A Two-dimensional array of doubles.
* @param m Number of rows.
* @param n Number of colums.
*/
public Matrix(double[][] A, int m, int n) {
this.A = A;
this.m = m;
this.n = n;
}
/**
* Construct a matrix from a one-dimensional packed array
*
* @param vals One-dimensional array of doubles, packed by columns (ala
* Fortran).
* @param m Number of rows.
* @throws IllegalArgumentException Array length must be a multiple of m.
*/
public Matrix(double vals[], int m) {
this.m = m;
n = (m != 0 ? vals.length / m : 0);
if (m * n != vals.length) {
throw new IllegalArgumentException(
"Array length must be a multiple of m.");
}
A = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = vals[i + j * m];
}
}
}
/**
* Reads a matrix from a reader. The first line in the file should contain the
* number of rows and columns. Subsequent lines contain elements of the
* matrix. (FracPete: taken from old weka.core.Matrix class)
*
* @param r the reader containing the matrix
* @throws Exception if an error occurs
* @see #write(Writer)
*/
public Matrix(Reader r) throws Exception {
LineNumberReader lnr = new LineNumberReader(r);
String line;
int currentRow = -1;
while ((line = lnr.readLine()) != null) {
// Comments
if (line.startsWith("%")) {
continue;
}
StringTokenizer st = new StringTokenizer(line);
// Ignore blank lines
if (!st.hasMoreTokens()) {
continue;
}
if (currentRow < 0) {
int rows = Integer.parseInt(st.nextToken());
if (!st.hasMoreTokens()) {
throw new Exception("Line " + lnr.getLineNumber()
+ ": expected number of columns");
}
int cols = Integer.parseInt(st.nextToken());
A = new double[rows][cols];
m = rows;
n = cols;
currentRow++;
continue;
} else {
if (currentRow == getRowDimension()) {
throw new Exception("Line " + lnr.getLineNumber()
+ ": too many rows provided");
}
for (int i = 0; i < getColumnDimension(); i++) {
if (!st.hasMoreTokens()) {
throw new Exception("Line " + lnr.getLineNumber()
+ ": too few matrix elements provided");
}
set(currentRow, i, Double.valueOf(st.nextToken()).doubleValue());
}
currentRow++;
}
}
if (currentRow == -1) {
throw new Exception("Line " + lnr.getLineNumber()
+ ": expected number of rows");
} else if (currentRow != getRowDimension()) {
throw new Exception("Line " + lnr.getLineNumber()
+ ": too few rows provided");
}
}
/**
* Construct a matrix from a copy of a 2-D array.
*
* @param A Two-dimensional array of doubles.
* @throws IllegalArgumentException All rows must have the same length
*/
public static Matrix constructWithCopy(double[][] A) {
int m = A.length;
int n = A[0].length;
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
if (A[i].length != n) {
throw new IllegalArgumentException(
"All rows must have the same length.");
}
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return X;
}
/**
* Make a deep copy of a matrix
*/
public Matrix copy() {
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return X;
}
/**
* Clone the Matrix object.
*/
@Override
public Object clone() {
return this.copy();
}
/**
* Access the internal two-dimensional array.
*
* @return Pointer to the two-dimensional array of matrix elements.
*/
public double[][] getArray() {
return A;
}
/**
* Copy the internal two-dimensional array.
*
* @return Two-dimensional array copy of matrix elements.
*/
public double[][] getArrayCopy() {
double[][] C = new double[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j];
}
}
return C;
}
/**
* Make a one-dimensional column packed copy of the internal array.
*
* @return Matrix elements packed in a one-dimensional array by columns.
*/
public double[] getColumnPackedCopy() {
double[] vals = new double[m * n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
vals[i + j * m] = A[i][j];
}
}
return vals;
}
/**
* Make a one-dimensional row packed copy of the internal array.
*
* @return Matrix elements packed in a one-dimensional array by rows.
*/
public double[] getRowPackedCopy() {
double[] vals = new double[m * n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
vals[i * n + j] = A[i][j];
}
}
return vals;
}
/**
* Get row dimension.
*
* @return m, the number of rows.
*/
public int getRowDimension() {
return m;
}
/**
* Get column dimension.
*
* @return n, the number of columns.
*/
public int getColumnDimension() {
return n;
}
/**
* Get a single element.
*
* @param i Row index.
* @param j Column index.
* @return A(i,j)
* @throws ArrayIndexOutOfBoundsException
*/
public double get(int i, int j) {
return A[i][j];
}
/**
* Get a submatrix.
*
* @param i0 Initial row index
* @param i1 Final row index
* @param j0 Initial column index
* @param j1 Final column index
* @return A(i0:i1,j0:j1)
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix(int i0, int i1, int j0, int j1) {
Matrix X = new Matrix(i1 - i0 + 1, j1 - j0 + 1);
double[][] B = X.getArray();
try {
for (int i = i0; i <= i1; i++) {
for (int j = j0; j <= j1; j++) {
B[i - i0][j - j0] = A[i][j];
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/**
* Get a submatrix.
*
* @param r Array of row indices.
* @param c Array of column indices.
* @return A(r(:),c(:))
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix(int[] r, int[] c) {
Matrix X = new Matrix(r.length, c.length);
double[][] B = X.getArray();
try {
for (int i = 0; i < r.length; i++) {
for (int j = 0; j < c.length; j++) {
B[i][j] = A[r[i]][c[j]];
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/**
* Get a submatrix.
*
* @param i0 Initial row index
* @param i1 Final row index
* @param c Array of column indices.
* @return A(i0:i1,c(:))
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix(int i0, int i1, int[] c) {
Matrix X = new Matrix(i1 - i0 + 1, c.length);
double[][] B = X.getArray();
try {
for (int i = i0; i <= i1; i++) {
for (int j = 0; j < c.length; j++) {
B[i - i0][j] = A[i][c[j]];
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/**
* Get a submatrix.
*
* @param r Array of row indices.
* @param j0 Initial column index
* @param j1 Final column index
* @return A(r(:),j0:j1)
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public Matrix getMatrix(int[] r, int j0, int j1) {
Matrix X = new Matrix(r.length, j1 - j0 + 1);
double[][] B = X.getArray();
try {
for (int i = 0; i < r.length; i++) {
for (int j = j0; j <= j1; j++) {
B[i][j - j0] = A[r[i]][j];
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
return X;
}
/**
* Set a single element.
*
* @param i Row index.
* @param j Column index.
* @param s A(i,j).
* @throws ArrayIndexOutOfBoundsException
*/
public void set(int i, int j, double s) {
A[i][j] = s;
}
/**
* Set a submatrix.
*
* @param i0 Initial row index
* @param i1 Final row index
* @param j0 Initial column index
* @param j1 Final column index
* @param X A(i0:i1,j0:j1)
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix(int i0, int i1, int j0, int j1, Matrix X) {
try {
for (int i = i0; i <= i1; i++) {
for (int j = j0; j <= j1; j++) {
A[i][j] = X.get(i - i0, j - j0);
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Set a submatrix.
*
* @param r Array of row indices.
* @param c Array of column indices.
* @param X A(r(:),c(:))
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix(int[] r, int[] c, Matrix X) {
try {
for (int i = 0; i < r.length; i++) {
for (int j = 0; j < c.length; j++) {
A[r[i]][c[j]] = X.get(i, j);
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Set a submatrix.
*
* @param r Array of row indices.
* @param j0 Initial column index
* @param j1 Final column index
* @param X A(r(:),j0:j1)
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix(int[] r, int j0, int j1, Matrix X) {
try {
for (int i = 0; i < r.length; i++) {
for (int j = j0; j <= j1; j++) {
A[r[i]][j] = X.get(i, j - j0);
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Set a submatrix.
*
* @param i0 Initial row index
* @param i1 Final row index
* @param c Array of column indices.
* @param X A(i0:i1,c(:))
* @throws ArrayIndexOutOfBoundsException Submatrix indices
*/
public void setMatrix(int i0, int i1, int[] c, Matrix X) {
try {
for (int i = i0; i <= i1; i++) {
for (int j = 0; j < c.length; j++) {
A[i][c[j]] = X.get(i - i0, j);
}
}
} catch (ArrayIndexOutOfBoundsException e) {
throw new ArrayIndexOutOfBoundsException("Submatrix indices");
}
}
/**
* Returns true if the matrix is symmetric. (FracPete: taken from old
* weka.core.Matrix class)
*
* @return boolean true if matrix is symmetric.
*/
public boolean isSymmetric() {
int nr = A.length, nc = A[0].length;
if (nr != nc) {
return false;
}
for (int i = 0; i < nc; i++) {
for (int j = 0; j < i; j++) {
if (A[i][j] != A[j][i]) {
return false;
}
}
}
return true;
}
/**
* returns whether the matrix is a square matrix or not.
*
* @return true if the matrix is a square matrix
*/
public boolean isSquare() {
return (getRowDimension() == getColumnDimension());
}
/**
* Matrix transpose.
*
* @return A'
*/
public Matrix transpose() {
Matrix X = new Matrix(n, m);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[j][i] = A[i][j];
}
}
return X;
}
/**
* One norm
*
* @return maximum column sum.
*/
public double norm1() {
double f = 0;
for (int j = 0; j < n; j++) {
double s = 0;
for (int i = 0; i < m; i++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f, s);
}
return f;
}
/**
* Two norm
*
* @return maximum singular value.
*/
public double norm2() {
return (new SingularValueDecomposition(this).norm2());
}
/**
* Infinity norm
*
* @return maximum row sum.
*/
public double normInf() {
double f = 0;
for (int i = 0; i < m; i++) {
double s = 0;
for (int j = 0; j < n; j++) {
s += Math.abs(A[i][j]);
}
f = Math.max(f, s);
}
return f;
}
/**
* Frobenius norm
*
* @return sqrt of sum of squares of all elements.
*/
public double normF() {
double f = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
f = Maths.hypot(f, A[i][j]);
}
}
return f;
}
/**
* Unary minus
*
* @return -A
*/
public Matrix uminus() {
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = -A[i][j];
}
}
return X;
}
/**
* C = A + B
*
* @param B another matrix
* @return A + B
*/
public Matrix plus(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] + B.A[i][j];
}
}
return X;
}
/**
* A = A + B
*
* @param B another matrix
* @return A + B
*/
public Matrix plusEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] + B.A[i][j];
}
}
return this;
}
/**
* C = A - B
*
* @param B another matrix
* @return A - B
*/
public Matrix minus(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] - B.A[i][j];
}
}
return X;
}
/**
* A = A - B
*
* @param B another matrix
* @return A - B
*/
public Matrix minusEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] - B.A[i][j];
}
}
return this;
}
/**
* Element-by-element multiplication, C = A.*B
*
* @param B another matrix
* @return A.*B
*/
public Matrix arrayTimes(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] * B.A[i][j];
}
}
return X;
}
/**
* Element-by-element multiplication in place, A = A.*B
*
* @param B another matrix
* @return A.*B
*/
public Matrix arrayTimesEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] * B.A[i][j];
}
}
return this;
}
/**
* Element-by-element right division, C = A./B
*
* @param B another matrix
* @return A./B
*/
public Matrix arrayRightDivide(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = A[i][j] / B.A[i][j];
}
}
return X;
}
/**
* Element-by-element right division in place, A = A./B
*
* @param B another matrix
* @return A./B
*/
public Matrix arrayRightDivideEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = A[i][j] / B.A[i][j];
}
}
return this;
}
/**
* Element-by-element left division, C = A.\B
*
* @param B another matrix
* @return A.\B
*/
public Matrix arrayLeftDivide(Matrix B) {
checkMatrixDimensions(B);
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = B.A[i][j] / A[i][j];
}
}
return X;
}
/**
* Element-by-element left division in place, A = A.\B
*
* @param B another matrix
* @return A.\B
*/
public Matrix arrayLeftDivideEquals(Matrix B) {
checkMatrixDimensions(B);
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = B.A[i][j] / A[i][j];
}
}
return this;
}
/**
* Multiply a matrix by a scalar, C = s*A
*
* @param s scalar
* @return s*A
*/
public Matrix times(double s) {
Matrix X = new Matrix(m, n);
double[][] C = X.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
C[i][j] = s * A[i][j];
}
}
return X;
}
/**
* Multiply a matrix by a scalar in place, A = s*A
*
* @param s scalar
* @return replace A by s*A
*/
public Matrix timesEquals(double s) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
A[i][j] = s * A[i][j];
}
}
return this;
}
/**
* Linear algebraic matrix multiplication, A * B
*
* @param B another matrix
* @return Matrix product, A * B
* @throws IllegalArgumentException Matrix inner dimensions must agree.
*/
public Matrix times(Matrix B) {
if (B.m != n) {
throw new IllegalArgumentException("Matrix inner dimensions must agree.");
}
Matrix X = new Matrix(m, B.n);
double[][] C = X.getArray();
double[] Bcolj = new double[n];
for (int j = 0; j < B.n; j++) {
for (int k = 0; k < n; k++) {
Bcolj[k] = B.A[k][j];
}
for (int i = 0; i < m; i++) {
double[] Arowi = A[i];
double s = 0;
for (int k = 0; k < n; k++) {
s += Arowi[k] * Bcolj[k];
}
C[i][j] = s;
}
}
return X;
}
/**
* LU Decomposition
*
* @return LUDecomposition
* @see LUDecomposition
*/
public LUDecomposition lu() {
return new LUDecomposition(this);
}
/**
* QR Decomposition
*
* @return QRDecomposition
* @see QRDecomposition
*/
public QRDecomposition qr() {
return new QRDecomposition(this);
}
/**
* Cholesky Decomposition
*
* @return CholeskyDecomposition
* @see CholeskyDecomposition
*/
public CholeskyDecomposition chol() {
return new CholeskyDecomposition(this);
}
/**
* Singular Value Decomposition
*
* @return SingularValueDecomposition
* @see SingularValueDecomposition
*/
public SingularValueDecomposition svd() {
return new SingularValueDecomposition(this);
}
/**
* Eigenvalue Decomposition
*
* @return EigenvalueDecomposition
* @see EigenvalueDecomposition
*/
public EigenvalueDecomposition eig() {
return new EigenvalueDecomposition(this);
}
/**
* Solve A*X = B
*
* @param B right hand side
* @return solution if A is square, least squares solution otherwise
*/
public Matrix solve(Matrix B) {
return (m == n ? (new LUDecomposition(this)).solve(B)
: (new QRDecomposition(this)).solve(B));
}
/**
* Solve X*A = B, which is also A'*X' = B'
*
* @param B right hand side
* @return solution if A is square, least squares solution otherwise.
*/
public Matrix solveTranspose(Matrix B) {
return transpose().solve(B.transpose());
}
/**
* Matrix inverse or pseudoinverse
*
* @return inverse(A) if A is square, pseudoinverse otherwise.
*/
public Matrix inverse() {
return solve(identity(m, m));
}
/**
* returns the square root of the matrix, i.e., X from the equation X*X = A.
* Steps in the Calculation (see sqrtm
in Matlab):
*
* - perform eigenvalue decomposition
* [V,D]=eig(A)
* - take the square root of all elements in D (only the ones with positive
* sign are considered for further computation)
* S=sqrt(D)
* - calculate the root
* X=V*S/V, which can be also written as X=(V'\(V*S)')'
*
*
* Note: since this method uses other high-level methods, it generates
* several instances of matrices. This can be problematic with large matrices.
*
* Examples:
*
* -
*
*
* X =
* 5 -4 1 0 0
* -4 6 -4 1 0
* 1 -4 6 -4 1
* 0 1 -4 6 -4
* 0 0 1 -4 5
*
* sqrt(X) =
* 2 -1 -0 -0 -0
* -1 2 -1 0 -0
* 0 -1 2 -1 0
* -0 0 -1 2 -1
* -0 -0 -0 -1 2
*
* Matrix m = new Matrix(new double[][]{{5,-4,1,0,0},{-4,6,-4,1,0},{1,-4,6,-4,1},{0,1,-4,6,-4},{0,0,1,-4,5}});
*
*
*
* -
*
*
* X =
* 7 10
* 15 22
*
* sqrt(X) =
* 1.5667 1.7408
* 2.6112 4.1779
*
* Matrix m = new Matrix(new double[][]{{7, 10},{15, 22}});
*
*
*
*
*
* @return sqrt(A)
*/
public Matrix sqrt() {
EigenvalueDecomposition evd;
Matrix s;
Matrix v;
Matrix d;
Matrix result;
Matrix a;
Matrix b;
int i;
int n;
result = null;
// eigenvalue decomp.
// [V, D] = eig(A) with A = this
evd = this.eig();
v = evd.getV();
d = evd.getD();
// S = sqrt of cells of D
s = new Matrix(d.getRowDimension(), d.getColumnDimension());
for (i = 0; i < s.getRowDimension(); i++) {
for (n = 0; n < s.getColumnDimension(); n++) {
s.set(i, n, StrictMath.sqrt(d.get(i, n)));
}
}
// to calculate:
// result = V*S/V
//
// with X = B/A
// and B/A = (A'\B')'
// and V=A and V*S=B
// we get
// result = (V'\(V*S)')'
//
// A*X = B
// X = A\B
// which is
// X = A.solve(B)
//
// with A=V' and B=(V*S)'
// we get
// X = V'.solve((V*S)')
// or
// result = X'
//
// which is in full length
// result = (V'.solve((V*S)'))'
a = v.inverse();
b = v.times(s).inverse();
v = null;
d = null;
evd = null;
s = null;
result = a.solve(b).inverse();
return result;
}
/**
* Performs a (ridged) linear regression. (FracPete: taken from old
* weka.core.Matrix class)
*
* @param y the dependent variable vector
* @param ridge the ridge parameter
* @return the coefficients
* @throws IllegalArgumentException if not successful
*/
public LinearRegression regression(Matrix y, double ridge) {
return new LinearRegression(this, y, ridge);
}
/**
* Performs a weighted (ridged) linear regression. (FracPete: taken from old
* weka.core.Matrix class)
*
* @param y the dependent variable vector
* @param w the array of data point weights
* @param ridge the ridge parameter
* @return the coefficients
* @throws IllegalArgumentException if the wrong number of weights were
* provided.
*/
public final LinearRegression regression(Matrix y, double[] w, double ridge) {
return new LinearRegression(this, y, w, ridge);
}
/**
* Matrix determinant
*
* @return determinant
*/
public double det() {
return new LUDecomposition(this).det();
}
/**
* Matrix rank
*
* @return effective numerical rank, obtained from SVD.
*/
public int rank() {
return new SingularValueDecomposition(this).rank();
}
/**
* Matrix condition (2 norm)
*
* @return ratio of largest to smallest singular value.
*/
public double cond() {
return new SingularValueDecomposition(this).cond();
}
/**
* Matrix trace.
*
* @return sum of the diagonal elements.
*/
public double trace() {
double t = 0;
for (int i = 0; i < Math.min(m, n); i++) {
t += A[i][i];
}
return t;
}
/**
* Generate matrix with random elements
*
* @param m Number of rows.
* @param n Number of colums.
* @return An m-by-n matrix with uniformly distributed random elements.
*/
public static Matrix random(int m, int n) {
Matrix A = new Matrix(m, n);
double[][] X = A.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = Math.random();
}
}
return A;
}
/**
* Generate identity matrix
*
* @param m Number of rows.
* @param n Number of colums.
* @return An m-by-n matrix with ones on the diagonal and zeros elsewhere.
*/
public static Matrix identity(int m, int n) {
Matrix A = new Matrix(m, n);
double[][] X = A.getArray();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
X[i][j] = (i == j ? 1.0 : 0.0);
}
}
return A;
}
/**
* Print the matrix to stdout. Line the elements up in columns with a
* Fortran-like 'Fw.d' style format.
*
* @param w Column width.
* @param d Number of digits after the decimal.
*/
public void print(int w, int d) {
print(new PrintWriter(System.out, true), w, d);
}
/**
* Print the matrix to the output stream. Line the elements up in columns with
* a Fortran-like 'Fw.d' style format.
*
* @param output Output stream.
* @param w Column width.
* @param d Number of digits after the decimal.
*/
public void print(PrintWriter output, int w, int d) {
DecimalFormat format = new DecimalFormat();
format.setDecimalFormatSymbols(new DecimalFormatSymbols(Locale.US));
format.setMinimumIntegerDigits(1);
format.setMaximumFractionDigits(d);
format.setMinimumFractionDigits(d);
format.setGroupingUsed(false);
print(output, format, w + 2);
}
/**
* Print the matrix to stdout. Line the elements up in columns. Use the format
* object, and right justify within columns of width characters. Note that is
* the matrix is to be read back in, you probably will want to use a
* NumberFormat that is set to US Locale.
*
* @param format A Formatting object for individual elements.
* @param width Field width for each column.
* @see java.text.DecimalFormat#setDecimalFormatSymbols
*/
public void print(NumberFormat format, int width) {
print(new PrintWriter(System.out, true), format, width);
}
// DecimalFormat is a little disappointing coming from Fortran or C's printf.
// Since it doesn't pad on the left, the elements will come out different
// widths. Consequently, we'll pass the desired column width in as an
// argument and do the extra padding ourselves.
/**
* Print the matrix to the output stream. Line the elements up in columns. Use
* the format object, and right justify within columns of width characters.
* Note that is the matrix is to be read back in, you probably will want to
* use a NumberFormat that is set to US Locale.
*
* @param output the output stream.
* @param format A formatting object to format the matrix elements
* @param width Column width.
* @see java.text.DecimalFormat#setDecimalFormatSymbols
*/
public void print(PrintWriter output, NumberFormat format, int width) {
output.println(); // start on new line.
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
String s = format.format(A[i][j]); // format the number
int padding = Math.max(1, width - s.length()); // At _least_ 1 space
for (int k = 0; k < padding; k++) {
output.print(' ');
}
output.print(s);
}
output.println();
}
output.println(); // end with blank line.
}
/**
* Read a matrix from a stream. The format is the same the print method, so
* printed matrices can be read back in (provided they were printed using US
* Locale). Elements are separated by whitespace, all the elements for each
* row appear on a single line, the last row is followed by a blank line.
*
* Note: This format differs from the one that can be read via the
* Matrix(Reader) constructor! For that format, the write(Writer) method is
* used (from the original weka.core.Matrix class).
*
* @param input the input stream.
* @see #Matrix(Reader)
* @see #write(Writer)
*/
public static Matrix read(BufferedReader input) throws java.io.IOException {
StreamTokenizer tokenizer = new StreamTokenizer(input);
// Although StreamTokenizer will parse numbers, it doesn't recognize
// scientific notation (E or D); however, Double.valueOf does.
// The strategy here is to disable StreamTokenizer's number parsing.
// We'll only get whitespace delimited words, EOL's and EOF's.
// These words should all be numbers, for Double.valueOf to parse.
tokenizer.resetSyntax();
tokenizer.wordChars(0, 255);
tokenizer.whitespaceChars(0, ' ');
tokenizer.eolIsSignificant(true);
java.util.Vector