All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.gui.visualize.Plot2D Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Plot2D.java
 *    Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.gui.visualize;

import weka.core.Environment;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Settings;
import weka.core.Utils;

import javax.swing.JFrame;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics;
import java.awt.event.InputEvent;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.ArrayList;
import java.util.Random;
import java.util.Vector;

/**
 * This class plots datasets in two dimensions. It can also plot classifier
 * errors and clusterer predictions.
 * 
 * @author Mark Hall ([email protected])
 * @version $Revision: 12391 $
 */
public class Plot2D extends JPanel {

  /** for serialization */
  private static final long serialVersionUID = -1673162410856660442L;

  /* constants for shape types */
  public static final int MAX_SHAPES = 5;
  public static final int ERROR_SHAPE = 1000;
  public static final int MISSING_SHAPE = 2000;
  public static final int CONST_AUTOMATIC_SHAPE = -1;
  public static final int X_SHAPE = 0;
  public static final int PLUS_SHAPE = 1;
  public static final int DIAMOND_SHAPE = 2;
  public static final int TRIANGLEUP_SHAPE = 3;
  public static final int TRIANGLEDOWN_SHAPE = 4;
  public static final int DEFAULT_SHAPE_SIZE = 2;

  /** Default colour for the axis */
  protected Color m_axisColour = Color.green;

  /** Default colour for the plot background */
  protected Color m_backgroundColour = Color.black;

  /** The plots to display */
  protected ArrayList m_plots = new ArrayList();

  /** The master plot */
  protected PlotData2D m_masterPlot = null;

  /** The name of the master plot */
  protected String m_masterName = "master plot";

  /** The instances to be plotted */
  protected Instances m_plotInstances = null;

  /**
   * An optional "compainion" of the panel. If specified, this class will get to
   * do its thing with our graphics context before we do any drawing. Eg. the
   * visualize panel may need to draw polygons etc. before we draw plot axis and
   * data points
   */
  protected Plot2DCompanion m_plotCompanion = null;

  /** the class for displaying instance info. */
  protected Class m_InstanceInfoFrameClass = null;

  /** For popping up text info on data points */
  protected JFrame m_InstanceInfo = null;

  /** The list of the colors used */
  protected ArrayList m_colorList;

  /** default colours for colouring discrete class */
  protected Color[] m_DefaultColors = { Color.blue, Color.red, Color.green,
    Color.cyan, Color.pink, new Color(255, 0, 255), Color.orange,
    new Color(255, 0, 0), new Color(0, 255, 0), Color.white };

  /**
   * Indexes of the attributes to go on the x and y axis and the attribute to
   * use for colouring and the current shape for drawing
   */
  protected int m_xIndex = 0;
  protected int m_yIndex = 0;
  protected int m_cIndex = 0;
  protected int m_sIndex = 0;

  /**
   * Holds the min and max values of the x, y and colouring attributes over all
   * plots
   */
  protected double m_maxX;
  protected double m_minX;
  protected double m_maxY;
  protected double m_minY;
  protected double m_maxC;
  protected double m_minC;

  /** Axis padding */
  protected final int m_axisPad = 5;

  /** Tick size */
  protected final int m_tickSize = 5;

  /** the offsets of the axes once label metrics are calculated */
  protected int m_XaxisStart = 0;
  protected int m_YaxisStart = 0;
  protected int m_XaxisEnd = 0;
  protected int m_YaxisEnd = 0;

  /**
   * if the user resizes the window, or the attributes selected for the
   * attributes change, then the lookup table for points needs to be
   * recalculated
   */
  protected boolean m_plotResize = true;

  /** if the user changes attribute assigned to an axis */
  protected boolean m_axisChanged = false;

  /**
   * An array used to show if a point is hidden or not. This is used for
   * speeding up the drawing of the plot panel although I am not sure how much
   * performance this grants over not having it.
   */
  protected int[][] m_drawnPoints;

  /** Font for labels */
  protected Font m_labelFont;
  protected FontMetrics m_labelMetrics = null;

  /** the level of jitter */
  protected int m_JitterVal = 0;

  /** random values for perterbing the data points */
  protected Random m_JRand = new Random(0);

  /** Constructor */
  public Plot2D() {
    super();
    setProperties();
    this.setBackground(m_backgroundColour);

    m_drawnPoints = new int[this.getWidth()][this.getHeight()];

    /** Set up some default colours */
    m_colorList = new ArrayList(10);
    for (int noa = m_colorList.size(); noa < 10; noa++) {
      Color pc = m_DefaultColors[noa % 10];
      int ija = noa / 10;
      ija *= 2;
      for (int j = 0; j < ija; j++) {
        pc = pc.darker();
      }

      m_colorList.add(pc);
    }
  }

  /**
   * Set the properties for Plot2D
   */
  private void setProperties() {
    if (VisualizeUtils.VISUALIZE_PROPERTIES != null) {
      String thisClass = this.getClass().getName();
      String axisKey = thisClass + ".axisColour";
      String backgroundKey = thisClass + ".backgroundColour";

      String axisColour =
        VisualizeUtils.VISUALIZE_PROPERTIES.getProperty(axisKey);
      if (axisColour == null) {
        /*
         * System.err.println("Warning: no configuration property found in "
         * +VisualizeUtils.PROPERTY_FILE +" for "+axisKey);
         */
      } else {
        // System.err.println("Setting axis colour to: "+axisColour);
        m_axisColour = VisualizeUtils.processColour(axisColour, m_axisColour);
      }

      String backgroundColour =
        VisualizeUtils.VISUALIZE_PROPERTIES.getProperty(backgroundKey);
      if (backgroundColour == null) {
        /*
         * System.err.println("Warning: no configuration property found in "
         * +VisualizeUtils.PROPERTY_FILE +" for "+backgroundKey);
         */
      } else {
        // System.err.println("Setting background colour to: "+backgroundColour);
        m_backgroundColour =
          VisualizeUtils.processColour(backgroundColour, m_backgroundColour);
      }

      try {
        m_InstanceInfoFrameClass =
          Class.forName(VisualizeUtils.VISUALIZE_PROPERTIES.getProperty(
            thisClass + ".instanceInfoFrame",
            "weka.gui.visualize.InstanceInfoFrame"));
      } catch (Exception e) {
        e.printStackTrace();
        m_InstanceInfoFrameClass = InstanceInfoFrame.class;
      }
    }
  }

  /**
   * Apply settings
   *
   * @param settings the settings to apply
   * @param ownerID the ID of the owner perspective, panel etc. to use when
   *          looking up our settings
   */
  public void applySettings(Settings settings, String ownerID) {
    m_axisColour =
      settings.getSetting(ownerID,
        VisualizeUtils.VisualizeDefaults.AXIS_COLOUR_KEY,
        VisualizeUtils.VisualizeDefaults.AXIS_COLOR,
        Environment.getSystemWide());
    m_backgroundColour =
      settings.getSetting(ownerID,
        VisualizeUtils.VisualizeDefaults.BACKGROUND_COLOUR_KEY,
        VisualizeUtils.VisualizeDefaults.BACKGROUND_COLOR,
        Environment.getSystemWide());
    this.setBackground(m_backgroundColour);

    repaint();
  }

  /**
   * Set a companion class. This is a class that might want to render something
   * on the plot before we do our thing. Eg, Malcolm's shape drawing stuff needs
   * to happen before we plot axis and points
   * 
   * @param p a companion class
   */
  public void setPlotCompanion(Plot2DCompanion p) {
    m_plotCompanion = p;
  }

  /**
   * Set level of jitter and repaint the plot using the new jitter value
   * 
   * @param j the level of jitter
   */
  public void setJitter(int j) {
    if (m_plotInstances.numAttributes() > 0
      && m_plotInstances.numInstances() > 0) {
      if (j >= 0) {
        m_JitterVal = j;
        m_JRand = new Random(m_JitterVal);
        // if (m_pointLookup != null) {
        m_drawnPoints =
          new int[m_XaxisEnd - m_XaxisStart + 1][m_YaxisEnd - m_YaxisStart + 1];
        updatePturb();
        // }
        this.repaint();
      }
    }
  }

  /**
   * Set a list of colours to use when colouring points according to class
   * values or cluster numbers
   * 
   * @param cols the list of colours to use
   */
  public void setColours(ArrayList cols) {
    m_colorList = cols;
  }

  /**
   * Set the index of the attribute to go on the x axis
   * 
   * @param x the index of the attribute to use on the x axis
   */
  public void setXindex(int x) {
    m_xIndex = x;
    for (int i = 0; i < m_plots.size(); i++) {
      m_plots.get(i).setXindex(m_xIndex);
    }
    determineBounds();
    if (m_JitterVal != 0) {
      updatePturb();
    }
    m_axisChanged = true;
    this.repaint();
  }

  /**
   * Set the index of the attribute to go on the y axis
   * 
   * @param y the index of the attribute to use on the y axis
   */
  public void setYindex(int y) {
    m_yIndex = y;
    for (int i = 0; i < m_plots.size(); i++) {
      m_plots.get(i).setYindex(m_yIndex);
    }
    determineBounds();
    if (m_JitterVal != 0) {
      updatePturb();
    }
    m_axisChanged = true;
    this.repaint();
  }

  /**
   * Set the index of the attribute to use for colouring
   * 
   * @param c the index of the attribute to use for colouring
   */
  public void setCindex(int c) {
    m_cIndex = c;
    for (int i = 0; i < m_plots.size(); i++) {
      m_plots.get(i).setCindex(m_cIndex);
    }
    determineBounds();
    m_axisChanged = true;
    this.repaint();
  }

  /**
   * Return the list of plots
   * 
   * @return the list of plots
   */
  public ArrayList getPlots() {
    return m_plots;
  }

  /**
   * Get the master plot
   * 
   * @return the master plot
   */
  public PlotData2D getMasterPlot() {
    return m_masterPlot;
  }

  /**
   * Return the current max value of the attribute plotted on the x axis
   * 
   * @return the max x value
   */
  public double getMaxX() {
    return m_maxX;
  }

  /**
   * Return the current max value of the attribute plotted on the y axis
   * 
   * @return the max y value
   */
  public double getMaxY() {
    return m_maxY;
  }

  /**
   * Return the current min value of the attribute plotted on the x axis
   * 
   * @return the min x value
   */
  public double getMinX() {
    return m_minX;
  }

  /**
   * Return the current min value of the attribute plotted on the y axis
   * 
   * @return the min y value
   */
  public double getMinY() {
    return m_minY;
  }

  /**
   * Return the current max value of the colouring attribute
   * 
   * @return the max colour value
   */
  public double getMaxC() {
    return m_maxC;
  }

  /**
   * Return the current min value of the colouring attribute
   * 
   * @return the min colour value
   */
  public double getMinC() {
    return m_minC;
  }

  /**
   * Sets the master plot from a set of instances
   * 
   * @param inst the instances
   * @exception Exception if instances could not be set
   */
  public void setInstances(Instances inst) throws Exception {
    // System.err.println("Setting Instances");
    PlotData2D tempPlot = new PlotData2D(inst);
    tempPlot.setPlotName("master plot");
    setMasterPlot(tempPlot);
  }

  /**
   * Set the master plot.
   * 
   * @param master the plot to make the master plot
   * @exception Exception if the plot could not be set.
   */
  public void setMasterPlot(PlotData2D master) throws Exception {
    if (master.m_plotInstances == null) {
      throw new Exception("No instances in plot data!");
    }
    removeAllPlots();
    m_masterPlot = master;
    m_plots.add(m_masterPlot);
    m_plotInstances = m_masterPlot.m_plotInstances;

    m_xIndex = 0;
    m_yIndex = 0;
    m_cIndex = 0;

    determineBounds();
  }

  /**
   * Clears all plots
   */
  public void removeAllPlots() {
    m_masterPlot = null;
    m_plotInstances = null;
    m_plots = new ArrayList();
    m_xIndex = 0;
    m_yIndex = 0;
    m_cIndex = 0;
  }

  /**
   * Add a plot to the list of plots to display
   * 
   * @param newPlot the new plot to add
   * @exception Exception if the plot could not be added
   */
  public void addPlot(PlotData2D newPlot) throws Exception {
    if (newPlot.m_plotInstances == null) {
      throw new Exception("No instances in plot data!");
    }

    if (m_masterPlot != null) {
      if (m_masterPlot.m_plotInstances.equalHeaders(newPlot.m_plotInstances) == false) {
        throw new Exception("Plot2D :Plot data's instances are incompatable "
          + " with master plot");
      }
    } else {
      m_masterPlot = newPlot;
      m_plotInstances = m_masterPlot.m_plotInstances;
    }
    m_plots.add(newPlot);
    setXindex(m_xIndex);
    setYindex(m_yIndex);
    setCindex(m_cIndex);
  }

  /**
   * Set up fonts and font metrics
   * 
   * @param gx the graphics context
   */
  private void setFonts(Graphics gx) {
    if (m_labelMetrics == null) {
      m_labelFont = new Font("Monospaced", Font.PLAIN, 12);
      m_labelMetrics = gx.getFontMetrics(m_labelFont);
    }
    gx.setFont(m_labelFont);
  }

  /**
   * Pops up a window displaying attribute information on any instances at a
   * point+-plotting_point_size (in panel coordinates)
   * 
   * @param x the x value of the clicked point
   * @param y the y value of the clicked point
   * @param newFrame true if instance info is to be displayed in a new frame.
   */
  public void searchPoints(int x, int y, final boolean newFrame) {
    if (m_masterPlot.m_plotInstances != null) {
      int longest = 0;
      for (int j = 0; j < m_masterPlot.m_plotInstances.numAttributes(); j++) {
        if (m_masterPlot.m_plotInstances.attribute(j).name().length() > longest) {
          longest = m_masterPlot.m_plotInstances.attribute(j).name().length();
        }
      }

      StringBuffer insts = new StringBuffer();
      Vector data = new Vector();
      for (int jj = 0; jj < m_plots.size(); jj++) {
        PlotData2D temp_plot = (m_plots.get(jj));
        data.add(new Instances(temp_plot.m_plotInstances, 0));

        for (int i = 0; i < temp_plot.m_plotInstances.numInstances(); i++) {
          if (temp_plot.m_pointLookup[i][0] != Double.NEGATIVE_INFINITY) {
            double px =
              temp_plot.m_pointLookup[i][0] + temp_plot.m_pointLookup[i][2];
            double py =
              temp_plot.m_pointLookup[i][1] + temp_plot.m_pointLookup[i][3];
            // double size = temp_plot.m_pointLookup[i][2];
            double size = temp_plot.m_shapeSize[i];
            if ((x >= px - size) && (x <= px + size) && (y >= py - size)
              && (y <= py + size)) {
              {
                data.get(jj).add(
                  (Instance) temp_plot.m_plotInstances.instance(i).copy());
                insts.append("\nPlot : " + temp_plot.m_plotName
                  + "\nInstance: " + (i + 1) + "\n");
                for (int j = 0; j < temp_plot.m_plotInstances.numAttributes(); j++) {
                  for (int k = 0; k < (longest - temp_plot.m_plotInstances
                    .attribute(j).name().length()); k++) {
                    insts.append(" ");
                  }
                  insts.append(temp_plot.m_plotInstances.attribute(j).name());
                  insts.append(" : ");

                  if (temp_plot.m_plotInstances.instance(i).isMissing(j)) {
                    insts.append("Missing");
                  } else if (temp_plot.m_plotInstances.attribute(j).isNominal()
                    || temp_plot.m_plotInstances.attribute(j).isString()) {
                    insts.append(temp_plot.m_plotInstances.attribute(j).value(
                      (int) temp_plot.m_plotInstances.instance(i).value(j)));
                  } else {
                    insts
                      .append(temp_plot.m_plotInstances.instance(i).value(j));
                  }
                  insts.append("\n");
                }
              }
            }
          }
        }
      }
      // remove datasets that contain no instances
      int i = 0;
      while (data.size() > i) {
        if (data.get(i).numInstances() == 0) {
          data.remove(i);
        } else {
          i++;
        }
      }

      if (insts.length() > 0) {
        // Pop up a new frame
        if (newFrame || m_InstanceInfo == null) {
          try {
            final JFrame jf = (JFrame) m_InstanceInfoFrameClass.newInstance();
            ((InstanceInfo) jf).setInfoText(insts.toString());
            ((InstanceInfo) jf).setInfoData(data);
            final JFrame testf = m_InstanceInfo;
            jf.addWindowListener(new WindowAdapter() {
              @Override
              public void windowClosing(WindowEvent e) {
                if (!newFrame || testf == null) {
                  m_InstanceInfo = null;
                }
                jf.dispose();
              }
            });
            jf.setVisible(true);
            if (m_InstanceInfo == null) {
              m_InstanceInfo = jf;
            }
          } catch (Exception e) {
            e.printStackTrace();
          }
        } else {
          // Overwrite info in existing frame
          ((InstanceInfo) m_InstanceInfo).setInfoText(insts.toString());
          ((InstanceInfo) m_InstanceInfo).setInfoData(data);
        }
      }
    }
  }

  /**
   * Determine the min and max values for axis and colouring attributes
   */
  public void determineBounds() {
    double value; // , min, max; NOT USED

    // find maximums minimums over all plots
    m_minX = m_plots.get(0).m_minX;
    m_maxX = m_plots.get(0).m_maxX;
    m_minY = m_plots.get(0).m_minY;
    m_maxY = m_plots.get(0).m_maxY;
    m_minC = m_plots.get(0).m_minC;
    m_maxC = m_plots.get(0).m_maxC;
    for (int i = 1; i < m_plots.size(); i++) {
      value = m_plots.get(i).m_minX;
      if (value < m_minX) {
        m_minX = value;
      }
      value = m_plots.get(i).m_maxX;
      if (value > m_maxX) {
        m_maxX = value;
      }
      value = m_plots.get(i).m_minY;
      if (value < m_minY) {
        m_minY = value;
      }
      value = m_plots.get(i).m_maxY;
      if (value > m_maxY) {
        m_maxY = value;
      }
      value = m_plots.get(i).m_minC;
      if (value < m_minC) {
        m_minC = value;
      }
      value = m_plots.get(i).m_maxC;
      if (value > m_maxC) {
        m_maxC = value;
      }
    }

    fillLookup();
    this.repaint();
  }

  // to convert screen coords to attrib values
  // note that I use a double to avoid accuracy
  // headaches with ints
  /**
   * convert a Panel x coordinate to a raw x value.
   * 
   * @param scx The Panel x coordinate
   * @return A raw x value.
   */
  public double convertToAttribX(double scx) {
    double temp = m_XaxisEnd - m_XaxisStart;
    double temp2 = ((scx - m_XaxisStart) * (m_maxX - m_minX)) / temp;

    temp2 = temp2 + m_minX;

    return temp2;
  }

  /**
   * convert a Panel y coordinate to a raw y value.
   * 
   * @param scy The Panel y coordinate
   * @return A raw y value.
   */
  public double convertToAttribY(double scy) {
    double temp = m_YaxisEnd - m_YaxisStart;
    double temp2 = ((scy - m_YaxisEnd) * (m_maxY - m_minY)) / temp;

    temp2 = -(temp2 - m_minY);

    return temp2;
  }

  // ////

  /**
   * returns a value by which an x value can be peturbed. Makes sure that the x
   * value+pturb stays within the plot bounds
   * 
   * @param xvalP the x coordinate to be peturbed
   * @param xj a random number to use in calculating a peturb value
   * @return a peturb value
   */
  int pturbX(double xvalP, double xj) {
    int xpturb = 0;
    if (m_JitterVal > 0) {
      xpturb = (int) (m_JitterVal * (xj / 2.0));
      if (((xvalP + xpturb) < m_XaxisStart) || ((xvalP + xpturb) > m_XaxisEnd)) {
        xpturb *= -1;
      }
    }
    return xpturb;
  }

  /**
   * Convert an raw x value to Panel x coordinate.
   * 
   * @param xval the raw x value
   * @return an x value for plotting in the panel.
   */
  public double convertToPanelX(double xval) {
    double temp = (xval - m_minX) / (m_maxX - m_minX);
    double temp2 = temp * (m_XaxisEnd - m_XaxisStart);

    temp2 = temp2 + m_XaxisStart;

    return temp2;
  }

  /**
   * returns a value by which a y value can be peturbed. Makes sure that the y
   * value+pturb stays within the plot bounds
   * 
   * @param yvalP the y coordinate to be peturbed
   * @param yj a random number to use in calculating a peturb value
   * @return a peturb value
   */
  int pturbY(double yvalP, double yj) {
    int ypturb = 0;
    if (m_JitterVal > 0) {
      ypturb = (int) (m_JitterVal * (yj / 2.0));
      if (((yvalP + ypturb) < m_YaxisStart) || ((yvalP + ypturb) > m_YaxisEnd)) {
        ypturb *= -1;
      }
    }
    return ypturb;
  }

  /**
   * Convert an raw y value to Panel y coordinate.
   * 
   * @param yval the raw y value
   * @return an y value for plotting in the panel.
   */
  public double convertToPanelY(double yval) {
    double temp = (yval - m_minY) / (m_maxY - m_minY);
    double temp2 = temp * (m_YaxisEnd - m_YaxisStart);

    temp2 = m_YaxisEnd - temp2;

    return temp2;
  }

  /**
   * Draws an X.
   * 
   * @param gx the graphics context
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the shape
   */
  private static void drawX(Graphics gx, double x, double y, int size) {
    gx.drawLine((int) (x - size), (int) (y - size), (int) (x + size),
      (int) (y + size));

    gx.drawLine((int) (x + size), (int) (y - size), (int) (x - size),
      (int) (y + size));
  }

  /**
   * Draws a plus.
   * 
   * @param gx the graphics context
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the shape
   */
  private static void drawPlus(Graphics gx, double x, double y, int size) {
    gx.drawLine((int) (x - size), (int) (y), (int) (x + size), (int) (y));

    gx.drawLine((int) (x), (int) (y - size), (int) (x), (int) (y + size));
  }

  /**
   * Draws a diamond.
   * 
   * @param gx the graphics context
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the shape
   */
  private static void drawDiamond(Graphics gx, double x, double y, int size) {
    gx.drawLine((int) (x - size), (int) (y), (int) (x), (int) (y - size));

    gx.drawLine((int) (x), (int) (y - size), (int) (x + size), (int) (y));

    gx.drawLine((int) (x + size), (int) (y), (int) (x), (int) (y + size));

    gx.drawLine((int) (x), (int) (y + size), (int) (x - size), (int) (y));
  }

  /**
   * Draws an triangle (point at top).
   * 
   * @param gx the graphics context
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the shape
   */
  private static void drawTriangleUp(Graphics gx, double x, double y, int size) {
    gx.drawLine((int) (x), (int) (y - size), (int) (x - size), (int) (y + size));

    gx.drawLine((int) (x - size), (int) (y + size), (int) (x + size),
      (int) (y + size));

    gx.drawLine((int) (x + size), (int) (y + size), (int) (x), (int) (y - size));

  }

  /**
   * Draws an triangle (point at bottom).
   * 
   * @param gx the graphics context
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the shape
   */
  private static void
    drawTriangleDown(Graphics gx, double x, double y, int size) {
    gx.drawLine((int) (x), (int) (y + size), (int) (x - size), (int) (y - size));

    gx.drawLine((int) (x - size), (int) (y - size), (int) (x + size),
      (int) (y - size));

    gx.drawLine((int) (x + size), (int) (y - size), (int) (x), (int) (y + size));

  }

  /**
   * Draws a data point at a given set of panel coordinates at a given size and
   * connects a line to the previous point.
   * 
   * @param x the x coord
   * @param y the y coord
   * @param xprev the x coord of the previous point
   * @param yprev the y coord of the previous point
   * @param size the size of the point
   * @param shape the shape of the data point (square is reserved for nominal
   *          error data points). Shapes: 0=x, 1=plus, 2=diamond,
   *          3=triangle(up), 4 = triangle (down).
   * @param gx the graphics context
   */
  protected static void drawDataPoint(double x, double y, double xprev,
    double yprev, int size, int shape, Graphics gx) {

    drawDataPoint(x, y, size, shape, gx);

    // connect a line to the previous point
    gx.drawLine((int) x, (int) y, (int) xprev, (int) yprev);
  }

  /**
   * Draws a data point at a given set of panel coordinates at a given size.
   * 
   * @param x the x coord
   * @param y the y coord
   * @param size the size of the point
   * @param shape the shape of the data point (square is reserved for nominal
   *          error data points). Shapes: 0=x, 1=plus, 2=diamond,
   *          3=triangle(up), 4 = triangle (down).
   * @param gx the graphics context
   */
  protected static void drawDataPoint(double x, double y, int size, int shape,
    Graphics gx) {

    Font lf = new Font("Monospaced", Font.PLAIN, 12);
    FontMetrics fm = gx.getFontMetrics(lf);

    if (size == 0) {
      size = 1;
    }

    if (shape != ERROR_SHAPE && shape != MISSING_SHAPE) {
      shape = shape % 5;
    }

    switch (shape) {
    case X_SHAPE:
      drawX(gx, x, y, size);
      break;
    case PLUS_SHAPE:
      drawPlus(gx, x, y, size);
      break;
    case DIAMOND_SHAPE:
      drawDiamond(gx, x, y, size);
      break;
    case TRIANGLEUP_SHAPE:
      drawTriangleUp(gx, x, y, size);
      break;
    case TRIANGLEDOWN_SHAPE:
      drawTriangleDown(gx, x, y, size);
      break;
    case ERROR_SHAPE: // draws the nominal error shape
      gx.drawRect((int) (x - size), (int) (y - size), (size * 2), (size * 2));
      break;
    case MISSING_SHAPE:
      int hf = fm.getAscent();
      int width = fm.stringWidth("M");
      gx.drawString("M", (int) (x - (width / 2)), (int) (y + (hf / 2)));
      break;
    }
  }

  /**
   * Updates the perturbed values for the plots when the jitter value is changed
   */
  private void updatePturb() {
    double xj = 0;
    double yj = 0;
    for (int j = 0; j < m_plots.size(); j++) {
      PlotData2D temp_plot = (m_plots.get(j));
      for (int i = 0; i < temp_plot.m_plotInstances.numInstances(); i++) {
        if (temp_plot.m_plotInstances.instance(i).isMissing(m_xIndex)
          || temp_plot.m_plotInstances.instance(i).isMissing(m_yIndex)) {
        } else {
          if (m_JitterVal > 0) {
            xj = m_JRand.nextGaussian();
            yj = m_JRand.nextGaussian();
          }
          temp_plot.m_pointLookup[i][2] =
            pturbX(temp_plot.m_pointLookup[i][0], xj);
          temp_plot.m_pointLookup[i][3] =
            pturbY(temp_plot.m_pointLookup[i][1], yj);
        }
      }
    }
  }

  /**
   * Fills the lookup caches for the plots. Also calculates errors for numeric
   * predictions (if any) in plots
   */
  private void fillLookup() {

    for (int j = 0; j < m_plots.size(); j++) {
      PlotData2D temp_plot = (m_plots.get(j));

      if (temp_plot.m_plotInstances.numInstances() > 0
        && temp_plot.m_plotInstances.numAttributes() > 0) {
        for (int i = 0; i < temp_plot.m_plotInstances.numInstances(); i++) {
          if (temp_plot.m_plotInstances.instance(i).isMissing(m_xIndex)
            || temp_plot.m_plotInstances.instance(i).isMissing(m_yIndex)) {
            temp_plot.m_pointLookup[i][0] = Double.NEGATIVE_INFINITY;
            temp_plot.m_pointLookup[i][1] = Double.NEGATIVE_INFINITY;
          } else {
            double x =
              convertToPanelX(temp_plot.m_plotInstances.instance(i).value(
                m_xIndex));
            double y =
              convertToPanelY(temp_plot.m_plotInstances.instance(i).value(
                m_yIndex));
            temp_plot.m_pointLookup[i][0] = x;
            temp_plot.m_pointLookup[i][1] = y;
          }
        }
      }
    }
  }

  /**
   * Draws the data points and predictions (if provided).
   * 
   * @param gx the graphics context
   */
  private void paintData(Graphics gx) {

    for (int j = 0; j < m_plots.size(); j++) {
      PlotData2D temp_plot = (m_plots.get(j));

      for (int i = 0; i < temp_plot.m_plotInstances.numInstances(); i++) {
        if (temp_plot.m_plotInstances.instance(i).isMissing(m_xIndex)
          || temp_plot.m_plotInstances.instance(i).isMissing(m_yIndex)) {
        } else {
          double x =
            (temp_plot.m_pointLookup[i][0] + temp_plot.m_pointLookup[i][2]);
          double y =
            (temp_plot.m_pointLookup[i][1] + temp_plot.m_pointLookup[i][3]);

          double prevx = 0;
          double prevy = 0;
          if (i > 0) {
            prevx =
              (temp_plot.m_pointLookup[i - 1][0] + temp_plot.m_pointLookup[i - 1][2]);
            prevy =
              (temp_plot.m_pointLookup[i - 1][1] + temp_plot.m_pointLookup[i - 1][3]);
          }

          int x_range = (int) x - m_XaxisStart;
          int y_range = (int) y - m_YaxisStart;

          if (x_range >= 0 && y_range >= 0) {
            if (m_drawnPoints[x_range][y_range] == i
              || m_drawnPoints[x_range][y_range] == 0
              || temp_plot.m_shapeSize[i] == temp_plot.m_alwaysDisplayPointsOfThisSize
              || temp_plot.m_displayAllPoints == true) {
              m_drawnPoints[x_range][y_range] = i;
              if (temp_plot.m_plotInstances.attribute(m_cIndex).isNominal()) {
                if (temp_plot.m_plotInstances.attribute(m_cIndex).numValues() > m_colorList
                  .size() && !temp_plot.m_useCustomColour) {
                  extendColourMap(temp_plot.m_plotInstances.attribute(m_cIndex)
                    .numValues());
                }

                Color ci;
                if (temp_plot.m_plotInstances.instance(i).isMissing(m_cIndex)) {
                  ci = Color.gray;
                } else {
                  int ind =
                    (int) temp_plot.m_plotInstances.instance(i).value(m_cIndex);
                  ci = m_colorList.get(ind);
                }

                if (!temp_plot.m_useCustomColour) {
                  gx.setColor(ci);
                } else {
                  gx.setColor(temp_plot.m_customColour);
                }

                if (temp_plot.m_plotInstances.instance(i).isMissing(m_cIndex)) {
                  if (temp_plot.m_connectPoints[i] == true) {
                    drawDataPoint(x, y, prevx, prevy, temp_plot.m_shapeSize[i],
                      MISSING_SHAPE, gx);
                  } else {
                    drawDataPoint(x, y, temp_plot.m_shapeSize[i],
                      MISSING_SHAPE, gx);
                  }
                } else {
                  if (temp_plot.m_shapeType[i] == CONST_AUTOMATIC_SHAPE) {
                    if (temp_plot.m_connectPoints[i] == true) {
                      drawDataPoint(x, y, prevx, prevy,
                        temp_plot.m_shapeSize[i], j, gx);
                    } else {
                      drawDataPoint(x, y, temp_plot.m_shapeSize[i], j, gx);
                    }
                  } else {
                    if (temp_plot.m_connectPoints[i] == true) {
                      drawDataPoint(x, y, prevx, prevy,
                        temp_plot.m_shapeSize[i], temp_plot.m_shapeType[i], gx);
                    } else {
                      drawDataPoint(x, y, temp_plot.m_shapeSize[i],
                        temp_plot.m_shapeType[i], gx);
                    }
                  }
                }
              } else {
                double r;
                Color ci = null;
                if (!temp_plot.m_plotInstances.instance(i).isMissing(m_cIndex)) {
                  r =
                    (temp_plot.m_plotInstances.instance(i).value(m_cIndex) - m_minC)
                      / (m_maxC - m_minC);
                  r = (r * 240) + 15;
                  ci = new Color((int) r, 150, (int) (255 - r));
                } else {
                  ci = Color.gray;
                }
                if (!temp_plot.m_useCustomColour) {
                  gx.setColor(ci);
                } else {
                  gx.setColor(temp_plot.m_customColour);
                }
                if (temp_plot.m_plotInstances.instance(i).isMissing(m_cIndex)) {
                  if (temp_plot.m_connectPoints[i] == true) {
                    drawDataPoint(x, y, prevx, prevy, temp_plot.m_shapeSize[i],
                      MISSING_SHAPE, gx);
                  } else {
                    drawDataPoint(x, y, temp_plot.m_shapeSize[i],
                      MISSING_SHAPE, gx);
                  }
                } else {
                  if (temp_plot.m_shapeType[i] == CONST_AUTOMATIC_SHAPE) {
                    if (temp_plot.m_connectPoints[i] == true) {
                      drawDataPoint(x, y, prevx, prevy,
                        temp_plot.m_shapeSize[i], j, gx);
                    } else {
                      drawDataPoint(x, y, temp_plot.m_shapeSize[i], j, gx);
                    }
                  } else {
                    if (temp_plot.m_connectPoints[i] == true) {
                      drawDataPoint(x, y, prevx, prevy,
                        temp_plot.m_shapeSize[i], temp_plot.m_shapeType[i], gx);
                    } else {
                      drawDataPoint(x, y, temp_plot.m_shapeSize[i],
                        temp_plot.m_shapeType[i], gx);
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }

  /*
   * public void determineAxisPositions(Graphics gx) { setFonts(gx); int mxs =
   * m_XaxisStart; int mxe = m_XaxisEnd; int mys = m_YaxisStart; int mye =
   * m_YaxisEnd; m_axisChanged = false;
   * 
   * int h = this.getHeight(); int w = this.getWidth(); int hf =
   * m_labelMetrics.getAscent(); int mswx=0; int mswy=0;
   * 
   * // determineBounds(); int fieldWidthX =
   * (int)((Math.log(m_maxX)/Math.log(10)))+1; int precisionX = 1; if
   * ((Math.abs(m_maxX-m_minX) < 1) && ((m_maxY-m_minX) != 0)) { precisionX =
   * (int)Math.abs(((Math.log(Math.abs(m_maxX-m_minX)) / Math.log(10))))+1; }
   * String maxStringX = Utils.doubleToString(m_maxX, fieldWidthX+1+precisionX
   * ,precisionX); mswx = m_labelMetrics.stringWidth(maxStringX); int
   * fieldWidthY = (int)((Math.log(m_maxY)/Math.log(10)))+1; int precisionY = 1;
   * if (Math.abs((m_maxY-m_minY)) < 1 && ((m_maxY-m_minY) != 0)) { precisionY =
   * (int)Math.abs(((Math.log(Math.abs(m_maxY-m_minY)) / Math.log(10))))+1; }
   * String maxStringY = Utils.doubleToString(m_maxY, fieldWidthY+1+precisionY
   * ,precisionY); String minStringY = Utils.doubleToString(m_minY,
   * fieldWidthY+1+precisionY ,precisionY);
   * 
   * if (m_plotInstances.attribute(m_yIndex).isNumeric()) { mswy =
   * (m_labelMetrics.stringWidth(maxStringY) >
   * m_labelMetrics.stringWidth(minStringY)) ?
   * m_labelMetrics.stringWidth(maxStringY) :
   * m_labelMetrics.stringWidth(minStringY); } else { mswy =
   * m_labelMetrics.stringWidth("MM"); }
   * 
   * m_YaxisStart = m_axisPad; m_XaxisStart = 0+m_axisPad+m_tickSize+mswy;
   * 
   * m_XaxisEnd = w-m_axisPad-(mswx/2);
   * 
   * m_YaxisEnd = h-m_axisPad-(2 * hf)-m_tickSize; }
   */

  /**
   * Draws the axis and a spectrum if the colouring attribute is numeric
   * 
   * @param gx the graphics context
   */
  private void paintAxis(Graphics gx) {
    setFonts(gx);
    int mxs = m_XaxisStart;
    int mxe = m_XaxisEnd;
    int mys = m_YaxisStart;
    int mye = m_YaxisEnd;
    m_plotResize = false;

    int h = this.getHeight();
    int w = this.getWidth();
    int hf = m_labelMetrics.getAscent();
    int mswx = 0;
    int mswy = 0;

    // determineBounds();
    int precisionXmax = 1;
    int precisionXmin = 1;
    int precisionXmid = 1;
    /*
     * if ((Math.abs(m_maxX-m_minX) < 1) && ((m_maxY-m_minX) != 0)) { precisionX
     * = (int)Math.abs(((Math.log(Math.abs(m_maxX-m_minX)) / Math.log(10))))+1;
     * }
     */
    int whole = (int) Math.abs(m_maxX);
    double decimal = Math.abs(m_maxX) - whole;
    int nondecimal;
    nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;

    precisionXmax =
      (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(m_maxX)) / Math
        .log(10)))) + 2 : 1;
    if (precisionXmax > VisualizeUtils.MAX_PRECISION) {
      precisionXmax = 1;
    }

    String maxStringX =
      Utils.doubleToString(m_maxX, nondecimal + 1 + precisionXmax,
        precisionXmax);

    whole = (int) Math.abs(m_minX);
    decimal = Math.abs(m_minX) - whole;
    nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;
    precisionXmin =
      (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(m_minX)) / Math
        .log(10)))) + 2 : 1;
    if (precisionXmin > VisualizeUtils.MAX_PRECISION) {
      precisionXmin = 1;
    }

    String minStringX =
      Utils.doubleToString(m_minX, nondecimal + 1 + precisionXmin,
        precisionXmin);

    mswx = m_labelMetrics.stringWidth(maxStringX);

    int precisionYmax = 1;
    int precisionYmin = 1;
    int precisionYmid = 1;
    whole = (int) Math.abs(m_maxY);
    decimal = Math.abs(m_maxY) - whole;
    nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;
    precisionYmax =
      (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(m_maxY)) / Math
        .log(10)))) + 2 : 1;
    if (precisionYmax > VisualizeUtils.MAX_PRECISION) {
      precisionYmax = 1;
    }

    String maxStringY =
      Utils.doubleToString(m_maxY, nondecimal + 1 + precisionYmax,
        precisionYmax);

    whole = (int) Math.abs(m_minY);
    decimal = Math.abs(m_minY) - whole;
    nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;
    precisionYmin =
      (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(m_minY)) / Math
        .log(10)))) + 2 : 1;
    if (precisionYmin > VisualizeUtils.MAX_PRECISION) {
      precisionYmin = 1;
    }

    String minStringY =
      Utils.doubleToString(m_minY, nondecimal + 1 + precisionYmin,
        precisionYmin);

    if (m_plotInstances.attribute(m_yIndex).isNumeric()) {
      mswy =
        (m_labelMetrics.stringWidth(maxStringY) > m_labelMetrics
          .stringWidth(minStringY)) ? m_labelMetrics.stringWidth(maxStringY)
          : m_labelMetrics.stringWidth(minStringY);
      mswy += m_labelMetrics.stringWidth("M");
    } else {
      mswy = m_labelMetrics.stringWidth("MM");
    }

    m_YaxisStart = m_axisPad;
    m_XaxisStart = 0 + m_axisPad + m_tickSize + mswy;

    m_XaxisEnd = w - m_axisPad - (mswx / 2);

    m_YaxisEnd = h - m_axisPad - (2 * hf) - m_tickSize;

    // draw axis
    gx.setColor(m_axisColour);
    if (m_plotInstances.attribute(m_xIndex).isNumeric()) {
      if (w > (2 * mswx)) {

        gx.drawString(maxStringX, m_XaxisEnd - (mswx / 2), m_YaxisEnd + hf
          + m_tickSize);

        mswx = m_labelMetrics.stringWidth(minStringX);
        gx.drawString(minStringX, (m_XaxisStart - (mswx / 2)), m_YaxisEnd + hf
          + m_tickSize);

        // draw the middle value
        if (w > (3 * mswx) && (m_plotInstances.attribute(m_xIndex).isNumeric())) {
          double mid = m_minX + ((m_maxX - m_minX) / 2.0);
          whole = (int) Math.abs(mid);
          decimal = Math.abs(mid) - whole;
          nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;
          precisionXmid =
            (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(mid)) / Math
              .log(10)))) + 2 : 1;
          if (precisionXmid > VisualizeUtils.MAX_PRECISION) {
            precisionXmid = 1;
          }

          String maxString =
            Utils.doubleToString(mid, nondecimal + 1 + precisionXmid,
              precisionXmid);
          int sw = m_labelMetrics.stringWidth(maxString);
          double mx = m_XaxisStart + ((m_XaxisEnd - m_XaxisStart) / 2.0);
          gx.drawString(maxString, (int) (mx - ((sw) / 2.0)), m_YaxisEnd + hf
            + m_tickSize);
          gx.drawLine((int) mx, m_YaxisEnd, (int) mx, m_YaxisEnd + m_tickSize);
        }
      }
    } else {
      int numValues = m_plotInstances.attribute(m_xIndex).numValues();
      int maxXStringWidth = (m_XaxisEnd - m_XaxisStart) / numValues;

      for (int i = 0; i < numValues; i++) {
        String val = m_plotInstances.attribute(m_xIndex).value(i);
        int sw = m_labelMetrics.stringWidth(val);
        int rm;
        // truncate string if necessary
        if (sw > maxXStringWidth) {
          int incr = (sw / val.length());
          rm = (sw - maxXStringWidth) / incr;
          if (rm == 0) {
            rm = 1;
          }
          val = val.substring(0, val.length() - rm);
          sw = m_labelMetrics.stringWidth(val);
        }
        if (i == 0) {
          gx.drawString(val, (int) convertToPanelX(i), m_YaxisEnd + hf
            + m_tickSize);
        } else if (i == numValues - 1) {
          if ((i % 2) == 0) {
            gx.drawString(val, m_XaxisEnd - sw, m_YaxisEnd + hf + m_tickSize);
          } else {
            gx.drawString(val, m_XaxisEnd - sw, m_YaxisEnd + (2 * hf)
              + m_tickSize);
          }
        } else {
          if ((i % 2) == 0) {
            gx.drawString(val, (int) convertToPanelX(i) - (sw / 2), m_YaxisEnd
              + hf + m_tickSize);
          } else {
            gx.drawString(val, (int) convertToPanelX(i) - (sw / 2), m_YaxisEnd
              + (2 * hf) + m_tickSize);
          }
        }
        gx.drawLine((int) convertToPanelX(i), m_YaxisEnd,
          (int) convertToPanelX(i), m_YaxisEnd + m_tickSize);
      }

    }

    // draw the y axis
    if (m_plotInstances.attribute(m_yIndex).isNumeric()) {
      if (h > (2 * hf)) {
        gx.drawString(maxStringY, m_XaxisStart - mswy - m_tickSize,
          m_YaxisStart + (hf));

        gx.drawString(minStringY, (m_XaxisStart - mswy - m_tickSize),
          m_YaxisEnd);

        // draw the middle value
        if (w > (3 * hf) && (m_plotInstances.attribute(m_yIndex).isNumeric())) {
          double mid = m_minY + ((m_maxY - m_minY) / 2.0);
          whole = (int) Math.abs(mid);
          decimal = Math.abs(mid) - whole;
          nondecimal = (whole > 0) ? (int) (Math.log(whole) / Math.log(10)) : 1;
          precisionYmid =
            (decimal > 0) ? (int) Math.abs(((Math.log(Math.abs(mid)) / Math
              .log(10)))) + 2 : 1;
          if (precisionYmid > VisualizeUtils.MAX_PRECISION) {
            precisionYmid = 1;
          }

          String maxString =
            Utils.doubleToString(mid, nondecimal + 1 + precisionYmid,
              precisionYmid);
          int sw = m_labelMetrics.stringWidth(maxString);
          double mx = m_YaxisStart + ((m_YaxisEnd - m_YaxisStart) / 2.0);
          gx.drawString(maxString, m_XaxisStart - sw - m_tickSize - 1,
            (int) (mx + ((hf) / 2.0)));
          gx.drawLine(m_XaxisStart - m_tickSize, (int) mx, m_XaxisStart,
            (int) mx);
        }
      }
    } else {
      int numValues = m_plotInstances.attribute(m_yIndex).numValues();
      int div = ((numValues % 2) == 0) ? (numValues / 2) : (numValues / 2 + 1);
      int maxYStringHeight = (m_YaxisEnd - m_XaxisStart) / div;
      int sw = m_labelMetrics.stringWidth("M");
      for (int i = 0; i < numValues; i++) {
        // can we at least print 2 characters
        if (maxYStringHeight >= (2 * hf)) {
          String val = m_plotInstances.attribute(m_yIndex).value(i);
          int numPrint =
            ((maxYStringHeight / hf) > val.length()) ? val.length()
              : (maxYStringHeight / hf);

          for (int j = 0; j < numPrint; j++) {
            String ll = val.substring(j, j + 1);
            if (val.charAt(j) == '_' || val.charAt(j) == '-') {
              ll = "|";
            }
            if (i == 0) {
              gx.drawString(ll, m_XaxisStart - sw - m_tickSize - 1,
                (int) convertToPanelY(i) - ((numPrint - 1) * hf) + (j * hf)
                  + (hf / 2));
            } else if (i == (numValues - 1)) {
              if ((i % 2) == 0) {
                gx.drawString(ll, m_XaxisStart - sw - m_tickSize - 1,
                  (int) convertToPanelY(i) + (j * hf) + (hf / 2));
              } else {
                gx.drawString(ll, m_XaxisStart - (2 * sw) - m_tickSize - 1,
                  (int) convertToPanelY(i) + (j * hf) + (hf / 2));
              }
            } else {
              if ((i % 2) == 0) {
                gx.drawString(ll, m_XaxisStart - sw - m_tickSize - 1,
                  (int) convertToPanelY(i) - (((numPrint - 1) * hf) / 2)
                    + (j * hf) + (hf / 2));
              } else {
                gx.drawString(ll, m_XaxisStart - (2 * sw) - m_tickSize - 1,
                  (int) convertToPanelY(i) - (((numPrint - 1) * hf) / 2)
                    + (j * hf) + (hf / 2));
              }
            }
          }
        }
        gx.drawLine(m_XaxisStart - m_tickSize, (int) convertToPanelY(i),
          m_XaxisStart, (int) convertToPanelY(i));
      }
    }

    gx.drawLine(m_XaxisStart, m_YaxisStart, m_XaxisStart, m_YaxisEnd);
    gx.drawLine(m_XaxisStart, m_YaxisEnd, m_XaxisEnd, m_YaxisEnd);

    if (m_XaxisStart != mxs || m_XaxisEnd != mxe || m_YaxisStart != mys
      || m_YaxisEnd != mye) {
      m_plotResize = true;
    }
  }

  /**
   * Add more colours to the colour map
   */
  private void extendColourMap(int highest) {
    // System.err.println("Extending colour map");
    for (int i = m_colorList.size(); i < highest; i++) {
      Color pc = m_DefaultColors[i % 10];
      int ija = i / 10;
      ija *= 2;
      for (int j = 0; j < ija; j++) {
        pc = pc.brighter();
      }

      m_colorList.add(pc);
    }
  }

  /**
   * Renders this component
   * 
   * @param gx the graphics context
   */
  @Override
  public void paintComponent(Graphics gx) {
    super.paintComponent(gx);
    if (m_plotInstances != null && m_plotInstances.numInstances() > 0
      && m_plotInstances.numAttributes() > 0) {
      if (m_plotCompanion != null) {
        m_plotCompanion.prePlot(gx);
      }

      m_JRand = new Random(m_JitterVal);
      paintAxis(gx);
      if (m_axisChanged || m_plotResize) {
        int x_range = m_XaxisEnd - m_XaxisStart;
        int y_range = m_YaxisEnd - m_YaxisStart;
        if (x_range < 10) {
          x_range = 10;
        }
        if (y_range < 10) {
          y_range = 10;
        }

        m_drawnPoints = new int[x_range + 1][y_range + 1];
        fillLookup();
        m_plotResize = false;
        m_axisChanged = false;
      }
      paintData(gx);
    }
  }

  protected static Color checkAgainstBackground(Color c, Color background) {
    if (background == null) {
      return c;
    }

    if (c.equals(background)) {
      int red = c.getRed();
      int blue = c.getBlue();
      int green = c.getGreen();
      red += (red < 128) ? (255 - red) / 2 : -(red / 2);
      blue += (blue < 128) ? (blue - red) / 2 : -(blue / 2);
      green += (green < 128) ? (255 - green) / 2 : -(green / 2);
      c = new Color(red, green, blue);
    }
    return c;
  }

  /**
   * Main method for testing this class
   * 
   * @param args arguments
   */
  public static void main(String[] args) {
    try {
      if (args.length < 1) {
        System.err.println("Usage : weka.gui.visualize.Plot2D "
          + " [ ...]");
        System.exit(1);
      }

      final javax.swing.JFrame jf =
        new javax.swing.JFrame("Weka Explorer: Visualize");
      jf.setSize(500, 400);
      jf.getContentPane().setLayout(new BorderLayout());
      final Plot2D p2 = new Plot2D();
      jf.getContentPane().add(p2, BorderLayout.CENTER);
      jf.addWindowListener(new java.awt.event.WindowAdapter() {
        @Override
        public void windowClosing(java.awt.event.WindowEvent e) {
          jf.dispose();
          System.exit(0);
        }
      });

      p2.addMouseListener(new MouseAdapter() {
        @Override
        public void mouseClicked(MouseEvent e) {
          if ((e.getModifiers() & InputEvent.BUTTON1_MASK) == InputEvent.BUTTON1_MASK) {
            p2.searchPoints(e.getX(), e.getY(), false);
          } else {
            p2.searchPoints(e.getX(), e.getY(), true);
          }
        }
      });

      jf.setVisible(true);
      if (args.length >= 1) {
        for (int j = 0; j < args.length; j++) {
          System.err.println("Loading instances from " + args[j]);
          java.io.Reader r =
            new java.io.BufferedReader(new java.io.FileReader(args[j]));
          Instances i = new Instances(r);
          i.setClassIndex(i.numAttributes() - 1);
          PlotData2D pd1 = new PlotData2D(i);

          if (j == 0) {
            pd1.setPlotName("Master plot");
            p2.setMasterPlot(pd1);
            p2.setXindex(2);
            p2.setYindex(3);
            p2.setCindex(i.classIndex());
          } else {
            pd1.setPlotName("Plot " + (j + 1));
            pd1.m_useCustomColour = true;
            pd1.m_customColour = (j % 2 == 0) ? Color.red : Color.blue;
            p2.addPlot(pd1);
          }
        }
      }
    } catch (Exception ex) {
      ex.printStackTrace();
      System.err.println(ex.getMessage());
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy