All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.gui.visualize.PlotData2D Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    PlotData2D.java
 *    Copyright (C) 2000-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.gui.visualize;

import java.awt.Color;
import java.io.Serializable;
import java.util.ArrayList;

import weka.core.Instances;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Add;

/**
 * This class is a container for plottable data. Instances form the primary
 * data. An optional array of classifier/clusterer predictions (associated 1 for
 * 1 with the instances) can also be provided.
 * 
 * @author Mark Hall ([email protected])
 * @version $Revision: 10220 $
 */
public class PlotData2D implements Serializable {

  /**
   * For serialization
   */
  private static final long serialVersionUID = -3979972167982697979L;

  /** The instances */
  protected Instances m_plotInstances = null;

  /** The name of this plot */
  protected String m_plotName = "new plot";

  /**
   * The name of this plot (possibly in html) suitable for using in a tool tip
   * text.
   */
  protected String m_plotNameHTML = null;

  /** Custom colour for this plot */
  public boolean m_useCustomColour = false;
  public Color m_customColour = null;

  /** Display all points (ie. those that map to the same display coords) */
  public boolean m_displayAllPoints = false;

  /**
   * If the shape size of a point equals this size then always plot it (i.e.
   * even if it is obscured by other points)
   */
  public int m_alwaysDisplayPointsOfThisSize = -1;

  /** Panel coordinate cache for data points */
  protected double[][] m_pointLookup;

  /**
   * Additional optional information to control the size of points. The default
   * is shape size 2
   */
  protected int[] m_shapeSize;

  /**
   * Additional optional information to control the point shape for this data.
   * Default is to allow automatic assigning of point shape on the basis of plot
   * number
   */
  protected int[] m_shapeType;

  /**
   * Additional optional information to control the drawing of lines between
   * consecutive points. Setting an entry in the array to true indicates that
   * the associated point should have a line connecting it to the previous
   * point.
   */
  protected boolean[] m_connectPoints;

  /** These are used to determine bounds */

  /** The x index */
  private int m_xIndex;

  /** The y index */
  private int m_yIndex;

  /** The colouring index */
  private int m_cIndex;

  /**
   * Holds the min and max values of the x, y and colouring attributes for this
   * plot
   */
  protected double m_maxX;
  protected double m_minX;
  protected double m_maxY;
  protected double m_minY;
  protected double m_maxC;
  protected double m_minC;

  /**
   * Construct a new PlotData2D using the supplied instances
   * 
   * @param insts the instances to use.
   */
  public PlotData2D(Instances insts) {
    m_plotInstances = insts;
    m_xIndex = m_yIndex = m_cIndex = 0;
    m_pointLookup = new double[m_plotInstances.numInstances()][4];
    m_shapeSize = new int[m_plotInstances.numInstances()];
    m_shapeType = new int[m_plotInstances.numInstances()];
    m_connectPoints = new boolean[m_plotInstances.numInstances()];
    for (int i = 0; i < m_plotInstances.numInstances(); i++) {
      m_shapeSize[i] = Plot2D.DEFAULT_SHAPE_SIZE; // default shape size
      m_shapeType[i] = Plot2D.CONST_AUTOMATIC_SHAPE; // default (automatic shape
                                                     // assignment)
    }
    determineBounds();
  }

  /**
   * Adds an instance number attribute to the plottable instances,
   */
  public void addInstanceNumberAttribute() {
    String originalRelationName = m_plotInstances.relationName();
    int originalClassIndex = m_plotInstances.classIndex();
    try {
      Add addF = new Add();
      addF.setAttributeName("Instance_number");
      addF.setAttributeIndex("first");
      addF.setInputFormat(m_plotInstances);
      m_plotInstances = Filter.useFilter(m_plotInstances, addF);
      m_plotInstances.setClassIndex(originalClassIndex + 1);
      for (int i = 0; i < m_plotInstances.numInstances(); i++) {
        m_plotInstances.instance(i).setValue(0, i);
      }
      m_plotInstances.setRelationName(originalRelationName);
    } catch (Exception ex) {
      ex.printStackTrace();
    }
  }

  /**
   * Returns the instances for this plot
   * 
   * @return the instances for this plot
   */
  public Instances getPlotInstances() {
    return new Instances(m_plotInstances);
  }

  /**
   * Set the name of this plot
   * 
   * @param name the name for this plot
   */
  public void setPlotName(String name) {
    m_plotName = name;
  }

  /**
   * Get the name of this plot
   * 
   * @return the name of this plot
   */
  public String getPlotName() {
    return m_plotName;
  }

  /**
   * Set the plot name for use in a tool tip text.
   * 
   * @param name the name of the plot for potential use in a tool tip text (may
   *          use html).
   */
  public void setPlotNameHTML(String name) {
    m_plotNameHTML = name;
  }

  /**
   * Get the name of the plot for use in a tool tip text. Defaults to the
   * standard plot name if it hasn't been set.
   * 
   * @return the name of this plot (possibly in html) for use in a tool tip
   *         text.
   */
  public String getPlotNameHTML() {
    if (m_plotNameHTML == null) {
      return m_plotName;
    }

    return m_plotNameHTML;
  }

  /**
   * Set the shape type for the plot data
   * 
   * @param st an array of integers corresponding to shape types (see constants
   *          defined in Plot2D)
   */
  public void setShapeType(int[] st) throws Exception {
    m_shapeType = st;
    if (m_shapeType.length != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: Shape type array must have the same "
        + "number of entries as number of data points!");
    }
    /*
     * for (int i = 0; i < st.length; i++) { if (m_shapeType[i] ==
     * Plot2D.ERROR_SHAPE) { m_shapeSize[i] = 3; } }
     */
  }

  /**
   * Get the shape types for the plot data
   * 
   * @return the shape types for the plot data
   */
  public int[] getShapeType() {
    return m_shapeType;
  }

  /**
   * Set the shape type for the plot data
   * 
   * @param st a FastVector of integers corresponding to shape types (see
   *          constants defined in Plot2D)
   */
  public void setShapeType(ArrayList st) throws Exception {
    if (st.size() != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: Shape type vector must have the same "
        + "number of entries as number of data points!");
    }
    m_shapeType = new int[st.size()];
    for (int i = 0; i < st.size(); i++) {
      m_shapeType[i] = st.get(i).intValue();
      /*
       * if (m_shapeType[i] == Plot2D.ERROR_SHAPE) { m_shapeSize[i] = 3; }
       */
    }
  }

  /**
   * Set the shape sizes for the plot data
   * 
   * @param ss an array of integers specifying the size of data points
   */
  public void setShapeSize(int[] ss) throws Exception {
    m_shapeSize = ss;
    if (m_shapeType.length != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: Shape size array must have the same "
        + "number of entries as number of data points!");
    }
  }

  /**
   * Get the shape sizes for the plot data
   * 
   * @return the shape sizes for the plot data
   */
  public int[] getShapeSize() {
    return m_shapeSize;
  }

  /**
   * Set the shape sizes for the plot data
   * 
   * @param ss a FastVector of integers specifying the size of data points
   */
  public void setShapeSize(ArrayList ss) throws Exception {
    if (ss.size() != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: Shape size vector must have the same "
        + "number of entries as number of data points!");
    }
    // System.err.println("Setting connect points ");
    m_shapeSize = new int[ss.size()];
    for (int i = 0; i < ss.size(); i++) {
      m_shapeSize[i] = ((Integer) ss.get(i)).intValue();
    }
  }

  /**
   * Set whether consecutive points should be connected by lines
   * 
   * @param cp an array of boolean specifying which points should be connected
   *          to their preceeding neighbour.
   */
  public void setConnectPoints(boolean[] cp) throws Exception {
    m_connectPoints = cp;
    if (m_connectPoints.length != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: connect points array must have the "
        + "same number of entries as number of data points!");
    }
    m_connectPoints[0] = false;
  }

  /**
   * Set whether consecutive points should be connected by lines
   * 
   * @param cp a FastVector of boolean specifying which points should be
   *          connected to their preceeding neighbour.
   */
  public void setConnectPoints(ArrayList cp) throws Exception {
    if (cp.size() != m_plotInstances.numInstances()) {
      throw new Exception("PlotData2D: connect points array must have the "
        + "same number of entries as number of data points!");
    }
    // System.err.println("Setting connect points ");
    m_shapeSize = new int[cp.size()];
    for (int i = 0; i < cp.size(); i++) {
      m_connectPoints[i] = cp.get(i).booleanValue();
    }
    m_connectPoints[0] = false;
  }

  /**
   * Set a custom colour to use for this plot. This overides any data index to
   * use for colouring. If null, then will revert back to the default (no custom
   * colouring).
   * 
   * @param c a custom colour to use for this plot or null (default---no
   *          colouring).
   */
  public void setCustomColour(Color c) {
    m_customColour = c;
    if (c != null) {
      m_useCustomColour = true;
    } else {
      m_useCustomColour = false;
    }
  }

  /**
   * Set the x index of the data.
   * 
   * @param x the x index
   */
  public void setXindex(int x) {
    m_xIndex = x;
    determineBounds();
  }

  /**
   * Set the y index of the data
   * 
   * @param y the y index
   */
  public void setYindex(int y) {
    m_yIndex = y;
    determineBounds();
  }

  /**
   * Set the colouring index of the data
   * 
   * @param c the colouring index
   */
  public void setCindex(int c) {
    m_cIndex = c;
    determineBounds();
  }

  /**
   * Get the currently set x index of the data
   * 
   * @return the current x index
   */
  public int getXindex() {
    return m_xIndex;
  }

  /**
   * Get the currently set y index of the data
   * 
   * @return the current y index
   */
  public int getYindex() {
    return m_yIndex;
  }

  /**
   * Get the currently set colouring index of the data
   * 
   * @return the current colouring index
   */
  public int getCindex() {
    return m_cIndex;
  }

  /**
   * Determine bounds for the current x,y and colouring indexes
   */
  private void determineBounds() {
    double value, min, max;

    if (m_plotInstances != null && m_plotInstances.numAttributes() > 0
      && m_plotInstances.numInstances() > 0) {
      // x bounds
      min = Double.POSITIVE_INFINITY;
      max = Double.NEGATIVE_INFINITY;
      if (m_plotInstances.attribute(m_xIndex).isNominal()) {
        m_minX = 0;
        m_maxX = m_plotInstances.attribute(m_xIndex).numValues() - 1;
      } else {
        for (int i = 0; i < m_plotInstances.numInstances(); i++) {
          if (!m_plotInstances.instance(i).isMissing(m_xIndex)) {
            value = m_plotInstances.instance(i).value(m_xIndex);
            if (value < min) {
              min = value;
            }
            if (value > max) {
              max = value;
            }
          }
        }

        // handle case where all values are missing
        if (min == Double.POSITIVE_INFINITY) {
          min = max = 0.0;
        }

        m_minX = min;
        m_maxX = max;
        if (min == max) {
          m_maxX += 0.05;
          m_minX -= 0.05;
        }
      }

      // y bounds
      min = Double.POSITIVE_INFINITY;
      max = Double.NEGATIVE_INFINITY;
      if (m_plotInstances.attribute(m_yIndex).isNominal()) {
        m_minY = 0;
        m_maxY = m_plotInstances.attribute(m_yIndex).numValues() - 1;
      } else {
        for (int i = 0; i < m_plotInstances.numInstances(); i++) {
          if (!m_plotInstances.instance(i).isMissing(m_yIndex)) {
            value = m_plotInstances.instance(i).value(m_yIndex);
            if (value < min) {
              min = value;
            }
            if (value > max) {
              max = value;
            }
          }
        }

        // handle case where all values are missing
        if (min == Double.POSITIVE_INFINITY) {
          min = max = 0.0;
        }

        m_minY = min;
        m_maxY = max;
        if (min == max) {
          m_maxY += 0.05;
          m_minY -= 0.05;
        }
      }

      // colour bounds
      min = Double.POSITIVE_INFINITY;
      max = Double.NEGATIVE_INFINITY;

      for (int i = 0; i < m_plotInstances.numInstances(); i++) {
        if (!m_plotInstances.instance(i).isMissing(m_cIndex)) {
          value = m_plotInstances.instance(i).value(m_cIndex);
          if (value < min) {
            min = value;
          }
          if (value > max) {
            max = value;
          }
        }
      }

      // handle case where all values are missing
      if (min == Double.POSITIVE_INFINITY) {
        min = max = 0.0;
      }

      m_minC = min;
      m_maxC = max;
    }
  }
}