All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.bayes.NaiveBayesMultinomialUpdateable Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    NaiveBayesMultinomialUpdateable.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *    Copyright (C) 2007 Jiang Su (incremental version)
 */

package weka.classifiers.bayes;

import weka.classifiers.UpdateableClassifier;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 *  Class for building and using a multinomial Naive
 * Bayes classifier. For more information see,
*
* Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes * Text Classification. In: AAAI-98 Workshop on 'Learning for Text * Categorization', 1998.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document.
*
* Incremental version of the algorithm. *

* * * BibTeX: * *

 * @inproceedings{Mccallum1998,
 *    author = {Andrew Mccallum and Kamal Nigam},
 *    booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'},
 *    title = {A Comparison of Event Models for Naive Bayes Text Classification},
 *    year = {1998}
 * }
 * 
*

* * * Valid options are: *

* *

 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * * @author Andrew Golightly ([email protected]) * @author Bernhard Pfahringer ([email protected]) * @author Jiang Su * @version $Revision: 11301 $ */ public class NaiveBayesMultinomialUpdateable extends NaiveBayesMultinomial implements UpdateableClassifier { /** for serialization */ private static final long serialVersionUID = -7204398796974263186L; /** the word count per class */ protected double[] m_wordsPerClass; /** * Returns a string describing this classifier * * @return a description of the classifier suitable for displaying in the * explorer/experimenter gui */ @Override public String globalInfo() { return super.globalInfo() + "\n\n" + "Incremental version of the algorithm."; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ @Override public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_headerInfo = new Instances(instances, 0); m_numClasses = instances.numClasses(); m_numAttributes = instances.numAttributes(); m_probOfWordGivenClass = new double[m_numClasses][]; m_wordsPerClass = new double[m_numClasses]; m_probOfClass = new double[m_numClasses]; // initialising the matrix of word counts // NOTE: Laplace estimator introduced in case a word that does not // appear for a class in the training set does so for the test set double laplace = 1; for (int c = 0; c < m_numClasses; c++) { m_probOfWordGivenClass[c] = new double[m_numAttributes]; m_probOfClass[c] = laplace; m_wordsPerClass[c] = laplace * m_numAttributes; for (int att = 0; att < m_numAttributes; att++) { m_probOfWordGivenClass[c][att] = laplace; } } for (int i = 0; i < instances.numInstances(); i++) { updateClassifier(instances.instance(i)); } } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model * @throws Exception if the instance could not be incorporated in the model. */ @Override public void updateClassifier(Instance instance) throws Exception { int classIndex = (int) instance.value(instance.classIndex()); m_probOfClass[classIndex] += instance.weight(); for (int a = 0; a < instance.numValues(); a++) { if (instance.index(a) == instance.classIndex() || instance.isMissingSparse(a)) { continue; } double numOccurences = instance.valueSparse(a) * instance.weight(); /* * if (numOccurences < 0) throw new Exception( * "Numeric attribute values must all be greater or equal to zero."); */ m_wordsPerClass[classIndex] += numOccurences; if (m_wordsPerClass[classIndex] < 0) { throw new Exception("Can't have a negative number of words for class " + (classIndex + 1)); } m_probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences; if (m_probOfWordGivenClass[classIndex][instance.index(a)] < 0) { throw new Exception( "Can't have a negative conditional sum for attribute " + instance.index(a)); } } } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if there is a problem generating the prediction */ @Override public double[] distributionForInstance(Instance instance) throws Exception { double[] probOfClassGivenDoc = new double[m_numClasses]; // calculate the array of log(Pr[D|C]) double[] logDocGivenClass = new double[m_numClasses]; for (int c = 0; c < m_numClasses; c++) { logDocGivenClass[c] += Math.log(m_probOfClass[c]); int allWords = 0; for (int i = 0; i < instance.numValues(); i++) { if (instance.index(i) == instance.classIndex()) { continue; } double frequencies = instance.valueSparse(i); allWords += frequencies; logDocGivenClass[c] += frequencies * Math.log(m_probOfWordGivenClass[c][instance.index(i)]); } logDocGivenClass[c] -= allWords * Math.log(m_wordsPerClass[c]); } double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; for (int i = 0; i < m_numClasses; i++) { probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max); } Utils.normalize(probOfClassGivenDoc); return probOfClassGivenDoc; } /** * Returns a string representation of the classifier. * * @return a string representation of the classifier */ @Override public String toString() { StringBuffer result = new StringBuffer(); result.append("Dictionary size: " + m_numAttributes).append("\n\n"); result.append("The independent frequency of a class\n"); result.append("--------------------------------------\n"); for (int c = 0; c < m_numClasses; c++) { result.append(m_headerInfo.classAttribute().value(c)).append("\t") .append(Double.toString(m_probOfClass[c])).append("\n"); } result.append("\nThe frequency of a word given the class\n"); result.append("-----------------------------------------\n"); for (int c = 0; c < m_numClasses; c++) { result.append(Utils.padLeft(m_headerInfo.classAttribute().value(c), 11)) .append("\t"); } result.append("\n"); for (int w = 0; w < m_numAttributes; w++) { if (w == m_headerInfo.classIndex()) { continue; } for (int c = 0; c < m_numClasses; c++) { result.append( Utils.padLeft(Double.toString(m_probOfWordGivenClass[c][w]), 11)) .append("\t"); } result.append(m_headerInfo.attribute(w).name()); result.append("\n"); } return result.toString(); } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11301 $"); } /** * Main method for testing this class. * * @param args the options */ public static void main(String[] args) { runClassifier(new NaiveBayesMultinomialUpdateable(), args); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy