weka.classifiers.evaluation.TwoClassStats Maven / Gradle / Ivy
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* TwoClassStats.java
* Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
/**
* Encapsulates performance functions for two-class problems.
*
* @author Len Trigg ([email protected])
* @version $Revision: 10169 $
*/
public class TwoClassStats implements RevisionHandler {
/** The names used when converting this object to a confusion matrix */
private static final String[] CATEGORY_NAMES = { "negative", "positive" };
/** Pos predicted as pos */
private double m_TruePos;
/** Neg predicted as pos */
private double m_FalsePos;
/** Neg predicted as neg */
private double m_TrueNeg;
/** Pos predicted as neg */
private double m_FalseNeg;
/**
* Creates the TwoClassStats with the given initial performance values.
*
* @param tp the number of correctly classified positives
* @param fp the number of incorrectly classified negatives
* @param tn the number of correctly classified negatives
* @param fn the number of incorrectly classified positives
*/
public TwoClassStats(double tp, double fp, double tn, double fn) {
setTruePositive(tp);
setFalsePositive(fp);
setTrueNegative(tn);
setFalseNegative(fn);
}
/** Sets the number of positive instances predicted as positive */
public void setTruePositive(double tp) {
m_TruePos = tp;
}
/** Sets the number of negative instances predicted as positive */
public void setFalsePositive(double fp) {
m_FalsePos = fp;
}
/** Sets the number of negative instances predicted as negative */
public void setTrueNegative(double tn) {
m_TrueNeg = tn;
}
/** Sets the number of positive instances predicted as negative */
public void setFalseNegative(double fn) {
m_FalseNeg = fn;
}
/** Gets the number of positive instances predicted as positive */
public double getTruePositive() {
return m_TruePos;
}
/** Gets the number of negative instances predicted as positive */
public double getFalsePositive() {
return m_FalsePos;
}
/** Gets the number of negative instances predicted as negative */
public double getTrueNegative() {
return m_TrueNeg;
}
/** Gets the number of positive instances predicted as negative */
public double getFalseNegative() {
return m_FalseNeg;
}
/**
* Calculate the true positive rate. This is defined as
*
*
*
* correctly classified positives
* ------------------------------
* total positives
*
*
* @return the true positive rate
*/
public double getTruePositiveRate() {
if (0 == (m_TruePos + m_FalseNeg)) {
return 0;
} else {
return m_TruePos / (m_TruePos + m_FalseNeg);
}
}
/**
* Calculate the false positive rate. This is defined as
*
*
*
* incorrectly classified negatives
* --------------------------------
* total negatives
*
*
* @return the false positive rate
*/
public double getFalsePositiveRate() {
if (0 == (m_FalsePos + m_TrueNeg)) {
return 0;
} else {
return m_FalsePos / (m_FalsePos + m_TrueNeg);
}
}
/**
* Calculate the precision. This is defined as
*
*
*
* correctly classified positives
* ------------------------------
* total predicted as positive
*
*
* @return the precision
*/
public double getPrecision() {
if (0 == (m_TruePos + m_FalsePos)) {
return 0;
} else {
return m_TruePos / (m_TruePos + m_FalsePos);
}
}
/**
* Calculate the recall. This is defined as
*
*
*
* correctly classified positives
* ------------------------------
* total positives
*
*
* (Which is also the same as the truePositiveRate.)
*
* @return the recall
*/
public double getRecall() {
return getTruePositiveRate();
}
/**
* Calculate the F-Measure. This is defined as
*
*
*
* 2 * recall * precision
* ----------------------
* recall + precision
*
*
* @return the F-Measure
*/
public double getFMeasure() {
double precision = getPrecision();
double recall = getRecall();
if ((precision + recall) == 0) {
return 0;
}
return 2 * precision * recall / (precision + recall);
}
/**
* Calculate the fallout. This is defined as
*
*
*
* incorrectly classified negatives
* --------------------------------
* total predicted as positive
*
*
* @return the fallout
*/
public double getFallout() {
if (0 == (m_TruePos + m_FalsePos)) {
return 0;
} else {
return m_FalsePos / (m_TruePos + m_FalsePos);
}
}
/**
* Generates a ConfusionMatrix
representing the current two-class
* statistics, using class names "negative" and "positive".
*
* @return a ConfusionMatrix
.
*/
public ConfusionMatrix getConfusionMatrix() {
ConfusionMatrix cm = new ConfusionMatrix(CATEGORY_NAMES);
cm.set(0, 0, m_TrueNeg);
cm.set(0, 1, m_FalsePos);
cm.set(1, 0, m_FalseNeg);
cm.set(1, 1, m_TruePos);
return cm;
}
/**
* Returns a string containing the various performance measures for the
* current object
*/
@Override
public String toString() {
StringBuffer res = new StringBuffer();
res.append(getTruePositive()).append(' ');
res.append(getFalseNegative()).append(' ');
res.append(getTrueNegative()).append(' ');
res.append(getFalsePositive()).append(' ');
res.append(getFalsePositiveRate()).append(' ');
res.append(getTruePositiveRate()).append(' ');
res.append(getPrecision()).append(' ');
res.append(getRecall()).append(' ');
res.append(getFMeasure()).append(' ');
res.append(getFallout()).append(' ');
return res.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
@Override
public String getRevision() {
return RevisionUtils.extract("$Revision: 10169 $");
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy