All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.supportVector.RegSMOImproved Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    RegSMOImproved.java
 *    Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions.supportVector;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

/**
 *  Learn SVM for regression using SMO with Shevade,
 * Keerthi, et al. adaption of the stopping criterion.
*
* For more information see:
*
* S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy: Improvements to * the SMO Algorithm for SVM Regression. In: IEEE Transactions on Neural * Networks, 1999.
*
* S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy (1999). * Improvements to the SMO Algorithm for SVM Regression. Control Division, Dept. * of Mechanical Engineering. *

* * * BibTeX: * *

 * @inproceedings{Shevade1999,
 *    author = {S.K. Shevade and S.S. Keerthi and C. Bhattacharyya and K.R.K. Murthy},
 *    booktitle = {IEEE Transactions on Neural Networks},
 *    title = {Improvements to the SMO Algorithm for SVM Regression},
 *    year = {1999},
 *    PS = {http://guppy.mpe.nus.edu.sg/\~mpessk/svm/ieee_smo_reg.ps.gz}
 * }
 * 
 * @techreport{Shevade1999,
 *    address = {Control Division, Dept. of Mechanical Engineering},
 *    author = {S.K. Shevade and S.S. Keerthi and C. Bhattacharyya and K.R.K. Murthy},
 *    institution = {National University of Singapore},
 *    number = {CD-99-16},
 *    title = {Improvements to the SMO Algorithm for SVM Regression},
 *    year = {1999},
 *    PS = {http://guppy.mpe.nus.edu.sg/\~mpessk/svm/smoreg_mod.ps.gz}
 * }
 * 
*

* * * Valid options are: *

* *

 * -T <double>
 *  The tolerance parameter for checking the stopping criterion.
 *  (default 0.001)
 * 
* *
 * -V
 *  Use variant 1 of the algorithm when true, otherwise use variant 2.
 *  (default true)
 * 
* *
 * -P <double>
 *  The epsilon for round-off error.
 *  (default 1.0e-12)
 * 
* *
 * -L <double>
 *  The epsilon parameter in epsilon-insensitive loss function.
 *  (default 1.0e-3)
 * 
* *
 * -W <double>
 *  The random number seed.
 *  (default 1)
 * 
* * * * @author Remco Bouckaert ([email protected],[email protected]) * @version $Revision: 10169 $ */ public class RegSMOImproved extends RegSMO implements TechnicalInformationHandler { /** for serialization */ private static final long serialVersionUID = 471692841446029784L; public final static int I0 = 3; public final static int I0a = 1; public final static int I0b = 2; public final static int I1 = 4; public final static int I2 = 8; public final static int I3 = 16; /** The different sets used by the algorithm. */ protected SMOset m_I0; /** Index set {i: 0 < m_alpha[i] < C || 0 < m_alphaStar[i] < C}} */ protected int[] m_iSet; /** b.up and b.low boundaries used to determine stopping criterion */ protected double m_bUp, m_bLow; /** index of the instance that gave us b.up and b.low */ protected int m_iUp, m_iLow; /** * tolerance parameter used for checking stopping criterion b.up < b.low + 2 * tol */ double m_fTolerance = 0.001; /** set true to use variant 1 of the paper, otherwise use variant 2 */ boolean m_bUseVariant1 = true; /** * Returns a string describing the object * * @return a description suitable for displaying in the explorer/experimenter * gui */ @Override public String globalInfo() { return "Learn SVM for regression using SMO with Shevade, Keerthi, et al. " + "adaption of the stopping criterion.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "S.K. Shevade and S.S. Keerthi and C. Bhattacharyya and K.R.K. Murthy"); result.setValue(Field.TITLE, "Improvements to the SMO Algorithm for SVM Regression"); result.setValue(Field.BOOKTITLE, "IEEE Transactions on Neural Networks"); result.setValue(Field.YEAR, "1999"); result.setValue(Field.PS, "http://guppy.mpe.nus.edu.sg/~mpessk/svm/ieee_smo_reg.ps.gz"); additional = result.add(Type.TECHREPORT); additional.setValue(Field.AUTHOR, "S.K. Shevade and S.S. Keerthi and C. Bhattacharyya and K.R.K. Murthy"); additional.setValue(Field.TITLE, "Improvements to the SMO Algorithm for SVM Regression"); additional.setValue(Field.INSTITUTION, "National University of Singapore"); additional.setValue(Field.ADDRESS, "Control Division, Dept. of Mechanical Engineering"); additional.setValue(Field.NUMBER, "CD-99-16"); additional.setValue(Field.YEAR, "1999"); additional.setValue(Field.PS, "http://guppy.mpe.nus.edu.sg/~mpessk/svm/smoreg_mod.ps.gz"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration




© 2015 - 2025 Weber Informatics LLC | Privacy Policy