weka.classifiers.trees.lmt.SimpleLinearRegression Maven / Gradle / Ivy
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* SimpleLinearRegression.java
* Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.lmt;
import java.io.Serializable;
import weka.core.Instance;
import weka.core.Instances;
/**
* Stripped down version of SimpleLinearRegression. Assumes that there are no
* missing class values.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 10169 $
*/
public class SimpleLinearRegression implements Serializable {
/** for serialization */
static final long serialVersionUID = 1779336022895414137L;
/** The index of the chosen attribute */
private int m_attributeIndex = -1;
/** The slope */
private double m_slope = Double.NaN;
/** The intercept */
private double m_intercept = Double.NaN;
/**
* Default constructor.
*/
public SimpleLinearRegression() {
}
/**
* Construct a simple linear regression model based on the given info.
*/
public SimpleLinearRegression(int attIndex, double slope, double intercept) {
m_attributeIndex = attIndex;
m_slope = slope;
m_intercept = intercept;
}
/**
* Takes the given simple linear regression model and adds it to this one.
* Does nothing if the given model is based on a different attribute. Assumes
* the given model has been initialized.
*/
public void addModel(SimpleLinearRegression slr) throws Exception {
m_attributeIndex = slr.m_attributeIndex;
if (m_attributeIndex != -1) {
m_slope += slr.m_slope;
m_intercept += slr.m_intercept;
} else {
m_slope = slr.m_slope;
m_intercept = slr.m_intercept;
}
}
/**
* Generate a prediction for the supplied instance.
*
* @param inst the instance to predict.
* @return the prediction
*/
public double classifyInstance(Instance inst) {
return m_intercept + m_slope * inst.value(m_attributeIndex);
}
/**
* Computes the attribute means.
*/
protected double[] computeMeans(Instances insts) {
// We can assume that all the attributes are numeric and that
// we don't have any missing attribute values (including the class)
double[] means = new double[insts.numAttributes()];
double[] counts = new double[insts.numAttributes()];
for (int j = 0; j < insts.numInstances(); j++) {
Instance inst = insts.instance(j);
for (int i = 0; i < insts.numAttributes(); i++) {
means[i] += inst.weight() * inst.value(i);
counts[i] += inst.weight();
}
}
for (int i = 0; i < insts.numAttributes(); i++) {
if (counts[i] > 0) {
means[i] /= counts[i];
} else {
means[i] = 0.0;
}
}
return means;
}
/**
* Builds a simple linear regression model given the supplied training data.
*
* @param insts the training data.
*/
public void buildClassifier(Instances insts) {
// Compute relevant statistics
double[] means = computeMeans(insts);
double[] slopes = new double[insts.numAttributes()];
double[] sumWeightedDiffsSquared = new double[insts.numAttributes()];
int classIndex = insts.classIndex();
// For all instances
for (int j = 0; j < insts.numInstances(); j++) {
Instance inst = insts.instance(j);
double yDiff = inst.value(classIndex) - means[classIndex];
double weightedYDiff = inst.weight() * yDiff;
// For all attributes
for (int i = 0; i < insts.numAttributes(); i++) {
double diff = inst.value(i) - means[i];
double weightedDiff = inst.weight() * diff;
// Doesn't matter if we compute this for the class
slopes[i] += weightedYDiff * diff;
// We need this for the class as well
sumWeightedDiffsSquared[i] += weightedDiff * diff;
}
}
// Pick the best attribute
double minSSE = Double.MAX_VALUE;
m_attributeIndex = -1;
for (int i = 0; i < insts.numAttributes(); i++) {
// Should we skip this attribute?
if ((i == classIndex) || (sumWeightedDiffsSquared[i] == 0)) {
continue;
}
// Compute final slope and intercept
double numerator = slopes[i];
slopes[i] /= sumWeightedDiffsSquared[i];
double intercept = means[classIndex] - slopes[i] * means[i];
// Compute sum of squared errors
double sse = sumWeightedDiffsSquared[classIndex] - slopes[i] * numerator;
// Check whether this is the best attribute
if (sse < minSSE) {
minSSE = sse;
m_attributeIndex = i;
m_slope = slopes[i];
m_intercept = intercept;
}
}
}
/**
* Returns true if a usable attribute was found.
*
* @return true if a usable attribute was found.
*/
public boolean foundUsefulAttribute() {
return (m_attributeIndex != -1);
}
/**
* Returns the index of the attribute used in the regression.
*
* @return the index of the attribute.
*/
public int getAttributeIndex() {
return m_attributeIndex;
}
/**
* Returns the slope of the function.
*
* @return the slope.
*/
public double getSlope() {
return m_slope;
}
/**
* Returns the intercept of the function.
*
* @return the intercept.
*/
public double getIntercept() {
return m_intercept;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy