All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.estimators.Estimator Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Estimator.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.estimators;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.Reader;
import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.CapabilitiesIgnorer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializedObject;
import weka.core.Utils;

/**
 * 
 * Abstract class for all estimators.
 * 
 * Example code for a nonincremental estimator  
 *   // create a histogram for estimation
 *   EqualWidthEstimator est = new EqualWidthEstimator();
 *   est.addValues(instances, attrIndex);
 * 
* * * Example code for an incremental estimator (incremental estimators must * implement interface IncrementalEstimator)
 *   // Create a discrete estimator that takes values 0 to 9
 *   DiscreteEstimator newEst = new DiscreteEstimator(10, true);
 * 
 *   // Create 50 random integers first predicting the probability of the
 *   // value, then adding the value to the estimator
 *   Random r = new Random(seed);
 *   for(int i = 0; i < 50; i++) {
 *     current = Math.abs(r.nextInt() % 10);
 *     System.out.println(newEst);
 *     System.out.println("Prediction for " + current 
 *                        + " = " + newEst.getProbability(current));
 *     newEst.addValue(current, 1);
 *   }
 * 
* * * Example code for a main method for an estimator. *

*

 * public static void main(String [] argv) {
 * 
 *   try {
 *     LoglikeliEstimator est = new LoglikeliEstimator();      
 *     Estimator.buildEstimator((Estimator) est, argv, false);      
 *     System.out.println(est.toString());
 *   } catch (Exception ex) {
 *     ex.printStackTrace();
 *     System.out.println(ex.getMessage());
 *   }
 * }
 * 
* * * @author Gabi Schmidberger ([email protected]) * @author Len Trigg ([email protected]) * @version $Revision: 11006 $ */ public abstract class Estimator implements Cloneable, Serializable, OptionHandler, CapabilitiesHandler, CapabilitiesIgnorer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -5902411487362274342L; /** Debugging mode */ private boolean m_Debug = false; /** * The class value index is > -1 if subset is taken with specific class value * only */ protected double m_classValueIndex = -1.0; /** set if class is not important */ protected boolean m_noClass = true; /** * Class to support a building process of an estimator. */ private static class Builder implements Serializable, RevisionHandler { /** for serialization */ private static final long serialVersionUID = -5810927990193597303L; /** instances of the builder */ Instances m_instances = null; /** attribute index of the builder */ int m_attrIndex = -1; /** class index of the builder, only relevant if class value index is set */ int m_classIndex = -1; /** class value index of the builder */ int m_classValueIndex = -1; /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11006 $"); } } /** Whether capabilities should not be checked */ protected boolean m_DoNotCheckCapabilities = false; /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String doNotCheckCapabilitiesTipText() { return "If set, estimator capabilities are not checked before estimator is built" + " (Use with caution to reduce runtime)."; } /** * Set whether not to check capabilities. * * @param doNotCheckCapabilities true if capabilities are not to be checked. */ public void setDoNotCheckCapabilities(boolean doNotCheckCapabilities) { m_DoNotCheckCapabilities = doNotCheckCapabilities; } /** * Get whether capabilities checking is turned off. * * @return true if capabilities checking is turned off. */ public boolean getDoNotCheckCapabilities() { return m_DoNotCheckCapabilities; } /** * Add a new data value to the current estimator. * * @param data the new data value * @param weight the weight assigned to the data value */ public void addValue(double data, double weight) { try { throw new Exception("Method to add single value is not implemented!\n" + "Estimator should implement IncrementalEstimator."); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } } /** * Initialize the estimator with a new dataset. Finds min and max first. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex) throws Exception { // can estimator handle the data? getCapabilities().testWithFail(data); double[] minMax = new double[2]; try { EstimatorUtils.getMinMax(data, attrIndex, minMax); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } double min = minMax[0]; double max = minMax[1]; // factor is 1.0, data set has not been reduced addValues(data, attrIndex, min, max, 1.0); } /** * Initialize the estimator with all values of one attribute of a dataset. * Some estimator might ignore the min and max values. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param min minimal border of range * @param max maximal border of range * @param factor number of instances has been reduced to that factor * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, double min, double max, double factor) throws Exception { // no handling of factor, would have to be overridden // no handling of min and max, would have to be overridden int numInst = data.numInstances(); for (int i = 1; i < numInst; i++) { addValue(data.instance(i).value(attrIndex), 1.0); } } /** * Initialize the estimator using only the instance of one class. It is using * the values of one attribute only. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param classIndex index of the class attribute * @param classValue the class value * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, int classIndex, int classValue) throws Exception { // can estimator handle the data? m_noClass = false; getCapabilities().testWithFail(data); // find the minimal and the maximal value double[] minMax = new double[2]; try { EstimatorUtils.getMinMax(data, attrIndex, minMax); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); } double min = minMax[0]; double max = minMax[1]; // extract the instances with the given class value Instances workData = new Instances(data, 0); double factor = getInstancesFromClass(data, attrIndex, classIndex, classValue, workData); // if no data return if (workData.numInstances() == 0) { return; } addValues(data, attrIndex, min, max, factor); } /** * Initialize the estimator using only the instance of one class. It is using * the values of one attribute only. * * @param data the dataset used to build this estimator * @param attrIndex attribute the estimator is for * @param classIndex index of the class attribute * @param classValue the class value * @param min minimal value of this attribute * @param max maximal value of this attribute * @exception Exception if building of estimator goes wrong */ public void addValues(Instances data, int attrIndex, int classIndex, int classValue, double min, double max) throws Exception { // extract the instances with the given class value Instances workData = new Instances(data, 0); double factor = getInstancesFromClass(data, attrIndex, classIndex, classValue, workData); // if no data return if (workData.numInstances() == 0) { return; } addValues(data, attrIndex, min, max, factor); } /** * Returns a dataset that contains all instances of a certain class value. * * @param data dataset to select the instances from * @param attrIndex index of the relevant attribute * @param classIndex index of the class attribute * @param classValue the relevant class value * @return a dataset with only */ private double getInstancesFromClass(Instances data, int attrIndex, int classIndex, double classValue, Instances workData) { // DBO.pln("getInstancesFromClass classValue"+classValue+" workData"+data.numInstances()); int num = 0; int numClassValue = 0; for (int i = 0; i < data.numInstances(); i++) { if (!data.instance(i).isMissing(attrIndex)) { num++; if (data.instance(i).value(classIndex) == classValue) { workData.add(data.instance(i)); numClassValue++; } } } Double alphaFactor = new Double((double) numClassValue / (double) num); return alphaFactor; } /** * Get a probability estimate for a value. * * @param data the value to estimate the probability of * @return the estimated probability of the supplied value */ public abstract double getProbability(double data); /** * Build an estimator using the options. The data is given in the options. * * @param est the estimator used * @param options the list of options * @param isIncremental true if estimator is incremental * @exception Exception if something goes wrong or the user requests help on * command options */ public static void buildEstimator(Estimator est, String[] options, boolean isIncremental) throws Exception { // DBO.pln("buildEstimator"); // read all options Builder build = new Builder(); try { setGeneralOptions(build, est, options); if (est instanceof OptionHandler) { ((OptionHandler) est).setOptions(options); } Utils.checkForRemainingOptions(options); buildEstimator(est, build.m_instances, build.m_attrIndex, build.m_classIndex, build.m_classValueIndex, isIncremental); } catch (Exception ex) { ex.printStackTrace(); System.out.println(ex.getMessage()); String specificOptions = ""; // Output the error and also the valid options if (est instanceof OptionHandler) { specificOptions += "\nEstimator options:\n\n"; Enumeration

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); } /** * Gets the current settings of the Estimator. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { String[] options; if (getDebug()) { options = new String[1]; options[0] = "-D"; } else { options = new String[0]; } return options; } /** * Creates a new instance of a estimatorr given it's class name and (optional) * arguments to pass to it's setOptions method. If the estimator implements * OptionHandler and the options parameter is non-null, the estimator will * have it's options set. * * @param name the fully qualified class name of the estimatorr * @param options an array of options suitable for passing to setOptions. May * be null. * @return the newly created estimator, ready for use. * @exception Exception if the estimator name is invalid, or the options * supplied are not acceptable to the estimator */ public static Estimator forName(String name, String[] options) throws Exception { return (Estimator) Utils.forName(Estimator.class, name, options); } /** * Set debugging mode. * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on. * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String debugTipText() { return "If set to true, estimator may output additional info to " + "the console."; } /** * Returns the Capabilities of this Estimator. Derived estimators have to * override this method to enable capabilities. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getCapabilities() { Capabilities result = new Capabilities(this); result.enableAll(); /* * // class if (!m_noClass) { result.enable(Capability.NOMINAL_CLASS); * result.enable(Capability.MISSING_CLASS_VALUES); } else { * result.enable(Capability.NO_CLASS); } */ return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11006 $"); } /** * Test if the estimator can handle the data. * * @param data the dataset the estimator takes an attribute from * @param attrIndex the index of the attribute * @see Capabilities */ public void testCapabilities(Instances data, int attrIndex) throws Exception { getCapabilities().testWithFail(data); getCapabilities().testWithFail(data.attribute(attrIndex)); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy