All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.LearningRateResultProducer Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    LearningRateResultProducer.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.core.AdditionalMeasureProducer;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;

/**
 *  Tells a sub-ResultProducer to reproduce the current
 * run for varying sized subsamples of the dataset. Normally used with an
 * AveragingResultProducer and CrossValidationResultProducer combo to generate
 * learning curve results. For non-numeric result fields, the first value is
 * used.
 * 

* * * Valid options are: *

* *

 * -X <num steps>
 *  The number of steps in the learning rate curve.
 *  (default 10)
 * 
* *
 * -W <class name>
 *  The full class name of a ResultProducer.
 *  eg: weka.experiment.CrossValidationResultProducer
 * 
* *
 * Options specific to result producer weka.experiment.AveragingResultProducer:
 * 
* *
 * -F <field name>
 *  The name of the field to average over.
 *  (default "Fold")
 * 
* *
 * -X <num results>
 *  The number of results expected per average.
 *  (default 10)
 * 
* *
 * -S
 *  Calculate standard deviations.
 *  (default only averages)
 * 
* *
 * -W <class name>
 *  The full class name of a ResultProducer.
 *  eg: weka.experiment.CrossValidationResultProducer
 * 
* *
 * Options specific to result producer weka.experiment.CrossValidationResultProducer:
 * 
* *
 * -X <number of folds>
 *  The number of folds to use for the cross-validation.
 *  (default 10)
 * 
* *
 * -D
 * Save raw split evaluator output.
 * 
* *
 * -O <file/directory name/path>
 *  The filename where raw output will be stored.
 *  If a directory name is specified then then individual
 *  outputs will be gzipped, otherwise all output will be
 *  zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)
 * 
* *
 * -W <class name>
 *  The full class name of a SplitEvaluator.
 *  eg: weka.experiment.ClassifierSplitEvaluator
 * 
* *
 * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator:
 * 
* *
 * -W <class name>
 *  The full class name of the classifier.
 *  eg: weka.classifiers.bayes.NaiveBayes
 * 
* *
 * -C <index>
 *  The index of the class for which IR statistics
 *  are to be output. (default 1)
 * 
* *
 * -I <index>
 *  The index of an attribute to output in the
 *  results. This attribute should identify an
 *  instance in order to know which instances are
 *  in the test set of a cross validation. if 0
 *  no output (default 0).
 * 
* *
 * -P
 *  Add target and prediction columns to the result
 *  for each fold.
 * 
* *
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * * All options after -- will be passed to the result producer. * * @author Len Trigg ([email protected]) * @version $Revision: 10203 $ */ public class LearningRateResultProducer implements ResultListener, ResultProducer, OptionHandler, AdditionalMeasureProducer, RevisionHandler { /** for serialization */ static final long serialVersionUID = -3841159673490861331L; /** The dataset of interest */ protected Instances m_Instances; /** The ResultListener to send results to */ protected ResultListener m_ResultListener = new CSVResultListener(); /** The ResultProducer used to generate results */ protected ResultProducer m_ResultProducer = new AveragingResultProducer(); /** The names of any additional measures to look for in SplitEvaluators */ protected String[] m_AdditionalMeasures = null; /** * The minimum number of instances to use. If this is zero, the first step * will contain m_StepSize instances */ protected int m_LowerSize = 0; /** * The maximum number of instances to use. -1 indicates no maximum (other than * the total number of instances) */ protected int m_UpperSize = -1; /** The number of instances to add at each step */ protected int m_StepSize = 10; /** The current dataset size during stepping */ protected int m_CurrentSize = 0; /** The name of the key field containing the learning rate step number */ public static String STEP_FIELD_NAME = "Total_instances"; /** * Returns a string describing this result producer * * @return a description of the result producer suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Tells a sub-ResultProducer to reproduce the current run for " + "varying sized subsamples of the dataset. Normally used with " + "an AveragingResultProducer and CrossValidationResultProducer " + "combo to generate learning curve results. For non-numeric " + "result fields, the first value is used."; } /** * Determines if there are any constraints (imposed by the destination) on the * result columns to be produced by resultProducers. Null should be returned * if there are NO constraints, otherwise a list of column names should be * returned as an array of Strings. * * @param rp the ResultProducer to which the constraints will apply * @return an array of column names to which resutltProducer's results will be * restricted. * @throws Exception if constraints can't be determined */ @Override public String[] determineColumnConstraints(ResultProducer rp) throws Exception { return null; } /** * Gets the keys for a specified run number. Different run numbers correspond * to different randomizations of the data. Keys produced should be sent to * the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ @Override public void doRunKeys(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.setInstances(m_Instances); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.doRunKeys(run); m_CurrentSize += m_StepSize; } } /** * Gets the results for a specified run number. Different run numbers * correspond to different randomizations of the data. Results produced should * be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ @Override public void doRun(int run) throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } if (m_Instances == null) { throw new Exception("No Instances set"); } // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); runInstances.randomize(new Random(run)); /* * if (runInstances.classAttribute().isNominal() && * (m_Instances.numInstances() / m_StepSize >= 1)) { // * runInstances.stratify(m_Instances.numInstances() / m_StepSize); } */ // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); // For each subsample size if (m_LowerSize == 0) { m_CurrentSize = m_StepSize; } else { m_CurrentSize = m_LowerSize; } while (m_CurrentSize <= m_Instances.numInstances() && ((m_UpperSize == -1) || (m_CurrentSize <= m_UpperSize))) { m_ResultProducer.setInstances(new Instances(runInstances, 0, m_CurrentSize)); m_ResultProducer.doRun(run); m_CurrentSize += m_StepSize; } } /** * Prepare for the results to be received. * * @param rp the ResultProducer that will generate the results * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess(ResultProducer rp) throws Exception { if (m_ResultListener == null) { throw new Exception("No ResultListener set"); } m_ResultListener.preProcess(this); } /** * Prepare to generate results. The ResultProducer should call * preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs during preprocessing. */ @Override public void preProcess() throws Exception { if (m_ResultProducer == null) { throw new Exception("No ResultProducer set"); } // Tell the resultproducer to send results to us m_ResultProducer.setResultListener(this); m_ResultProducer.preProcess(); } /** * When this method is called, it indicates that no more results will be sent * that need to be grouped together in any way. * * @param rp the ResultProducer that generated the results * @throws Exception if an error occurs */ @Override public void postProcess(ResultProducer rp) throws Exception { m_ResultListener.postProcess(this); } /** * When this method is called, it indicates that no more requests to generate * results for the current experiment will be sent. The ResultProducer should * call preProcess(this) on the ResultListener it is to send results to. * * @throws Exception if an error occurs */ @Override public void postProcess() throws Exception { m_ResultProducer.postProcess(); } /** * Accepts results from a ResultProducer. * * @param rp the ResultProducer that generated the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @param result the results stored in an array. The objects stored in the * array may be Strings, Doubles, or null (for the missing value). * @throws Exception if the result could not be accepted. */ @Override public void acceptResult(ResultProducer rp, Object[] key, Object[] result) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object[] newKey = new Object[key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on to result listener m_ResultListener.acceptResult(this, newKey, result); } /** * Determines whether the results for a specified key must be generated. * * @param rp the ResultProducer wanting to generate the results * @param key an array of Objects (Strings or Doubles) that uniquely identify * a result for a given ResultProducer with given compatibilityState * @return true if the result should be generated * @throws Exception if it could not be determined if the result is needed. */ @Override public boolean isResultRequired(ResultProducer rp, Object[] key) throws Exception { if (m_ResultProducer != rp) { throw new Error("Unrecognized ResultProducer sending results!!"); } // Add in current step as key field Object[] newKey = new Object[key.length + 1]; System.arraycopy(key, 0, newKey, 0, key.length); newKey[key.length] = new String("" + m_CurrentSize); // Pass on request to result listener return m_ResultListener.isResultRequired(this, newKey); } /** * Gets the names of each of the columns produced for a single run. * * @return an array containing the name of each column * @throws Exception if key names cannot be generated */ @Override public String[] getKeyNames() throws Exception { String[] keyNames = m_ResultProducer.getKeyNames(); String[] newKeyNames = new String[keyNames.length + 1]; System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length); // Think of a better name for this key field newKeyNames[keyNames.length] = STEP_FIELD_NAME; return newKeyNames; } /** * Gets the data types of each of the columns produced for a single run. This * method should really be static. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the key types could not be determined (perhaps because * of a problem from a nested sub-resultproducer) */ @Override public Object[] getKeyTypes() throws Exception { Object[] keyTypes = m_ResultProducer.getKeyTypes(); Object[] newKeyTypes = new Object[keyTypes.length + 1]; System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length); newKeyTypes[keyTypes.length] = ""; return newKeyTypes; } /** * Gets the names of each of the columns produced for a single run. A new * result field is added for the number of results used to produce each * average. If only averages are being produced the names are not altered, if * standard deviations are produced then "Dev_" and "Avg_" are prepended to * each result deviation and average field respectively. * * @return an array containing the name of each column * @throws Exception if the result names could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public String[] getResultNames() throws Exception { return m_ResultProducer.getResultNames(); } /** * Gets the data types of each of the columns produced for a single run. * * @return an array containing objects of the type of each column. The objects * should be Strings, or Doubles. * @throws Exception if the result types could not be determined (perhaps * because of a problem from a nested sub-resultproducer) */ @Override public Object[] getResultTypes() throws Exception { return m_ResultProducer.getResultTypes(); } /** * Gets a description of the internal settings of the result producer, * sufficient for distinguishing a ResultProducer instance from another with * different settings (ignoring those settings set through this interface). * For example, a cross-validation ResultProducer may have a setting for the * number of folds. For a given state, the results produced should be * compatible. Typically if a ResultProducer is an OptionHandler, this string * will represent the command line arguments required to set the * ResultProducer to that state. * * @return the description of the ResultProducer state, or null if no state is * defined */ @Override public String getCompatibilityState() { String result = " "; // + "-F " + Utils.quote(getKeyFieldName()) // + " -X " + getStepSize() + " "; if (m_ResultProducer == null) { result += ""; } else { result += "-W " + m_ResultProducer.getClass().getName(); result += " -- " + m_ResultProducer.getCompatibilityState(); } return result.trim(); } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ @Override public Enumeration




© 2015 - 2025 Weber Informatics LLC | Privacy Policy