weka.experiment.PairedCorrectedTTester Maven / Gradle / Ivy
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* PairedCorrectedTTester.java
* Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.experiment;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.Enumeration;
import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
/**
* Behaves the same as PairedTTester, only it uses the corrected resampled
* t-test statistic.
*
*
* For more information see:
*
*
* Claude Nadeau, Yoshua Bengio (2001).
* Inference for the Generalization Error. Machine Learning..
*
*
*
* BibTeX:
*
*
* @article{Nadeau2001,
* author = {Claude Nadeau and Yoshua Bengio},
* journal = {Machine Learning},
* title = {Inference for the Generalization Error},
* year = {2001},
* PDF = {http://www.iro.umontreal.ca/\~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf}
* }
*
*
*
*
* Valid options are:
*
*
*
* -D <index,index2-index4,...>
* Specify list of columns that specify a unique
* dataset.
* First and last are valid indexes. (default none)
*
*
*
* -R <index>
* Set the index of the column containing the run number
*
*
*
* -F <index>
* Set the index of the column containing the fold number
*
*
*
* -G <index1,index2-index4,...>
* Specify list of columns that specify a unique
* 'result generator' (eg: classifier name and options).
* First and last are valid indexes. (default none)
*
*
*
* -S <significance level>
* Set the significance level for comparisons (default 0.05)
*
*
*
* -V
* Show standard deviations
*
*
*
* -L
* Produce table comparisons in Latex table format
*
*
*
* -csv
* Produce table comparisons in CSV table format
*
*
*
* -html
* Produce table comparisons in HTML table format
*
*
*
* -significance
* Produce table comparisons with only the significance values
*
*
*
* -gnuplot
* Produce table comparisons output suitable for GNUPlot
*
*
*
*
* @author Richard Kirkby ([email protected])
* @version $Revision: 10203 $
*/
public class PairedCorrectedTTester extends PairedTTester implements
TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -3105268939845653323L;
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.ARTICLE);
result.setValue(Field.AUTHOR, "Claude Nadeau and Yoshua Bengio");
result.setValue(Field.YEAR, "2001");
result.setValue(Field.TITLE, "Inference for the Generalization Error");
result.setValue(Field.JOURNAL, "Machine Learning");
result
.setValue(
Field.PDF,
"http://www.iro.umontreal.ca/~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf");
return result;
}
/**
* Computes a paired t-test comparison for a specified dataset between two
* resultsets.
*
* @param datasetSpecifier the dataset specifier
* @param resultset1Index the index of the first resultset
* @param resultset2Index the index of the second resultset
* @param comparisonColumn the column containing values to compare
* @return the results of the paired comparison
* @throws Exception if an error occurs
*/
@Override
public PairedStats calculateStatistics(Instance datasetSpecifier,
int resultset1Index, int resultset2Index, int comparisonColumn)
throws Exception {
if (m_Instances.attribute(comparisonColumn).type() != Attribute.NUMERIC) {
throw new Exception("Comparison column " + (comparisonColumn + 1) + " ("
+ m_Instances.attribute(comparisonColumn).name() + ") is not numeric");
}
if (!m_ResultsetsValid) {
prepareData();
}
Resultset resultset1 = (Resultset) m_Resultsets.get(resultset1Index);
Resultset resultset2 = (Resultset) m_Resultsets.get(resultset2Index);
ArrayList dataset1 = resultset1.dataset(datasetSpecifier);
ArrayList dataset2 = resultset2.dataset(datasetSpecifier);
String datasetName = templateString(datasetSpecifier);
if (dataset1 == null) {
throw new Exception("No results for dataset=" + datasetName
+ " for resultset=" + resultset1.templateString());
} else if (dataset2 == null) {
throw new Exception("No results for dataset=" + datasetName
+ " for resultset=" + resultset2.templateString());
} else if (dataset1.size() != dataset2.size()) {
throw new Exception("Results for dataset=" + datasetName
+ " differ in size for resultset=" + resultset1.templateString()
+ " and resultset=" + resultset2.templateString());
}
// calculate the test/train ratio
double testTrainRatio = 0.0;
int trainSizeIndex = -1;
int testSizeIndex = -1;
// find the columns with the train/test sizes
for (int i = 0; i < m_Instances.numAttributes(); i++) {
if (m_Instances.attribute(i).name().toLowerCase()
.equals("number_of_training_instances")) {
trainSizeIndex = i;
} else if (m_Instances.attribute(i).name().toLowerCase()
.equals("number_of_testing_instances")) {
testSizeIndex = i;
}
}
if (trainSizeIndex >= 0 && testSizeIndex >= 0) {
double totalTrainSize = 0.0;
double totalTestSize = 0.0;
for (int k = 0; k < dataset1.size(); k++) {
Instance current = dataset1.get(k);
totalTrainSize += current.value(trainSizeIndex);
totalTestSize += current.value(testSizeIndex);
}
testTrainRatio = totalTestSize / totalTrainSize;
}
PairedStats pairedStats = new PairedStatsCorrected(m_SignificanceLevel,
testTrainRatio);
for (int k = 0; k < dataset1.size(); k++) {
Instance current1 = dataset1.get(k);
Instance current2 = dataset2.get(k);
if (current1.isMissing(comparisonColumn)) {
System.err.println("Instance has missing value in comparison "
+ "column!\n" + current1);
continue;
}
if (current2.isMissing(comparisonColumn)) {
System.err.println("Instance has missing value in comparison "
+ "column!\n" + current2);
continue;
}
if (current1.value(m_RunColumn) != current2.value(m_RunColumn)) {
System.err.println("Run numbers do not match!\n" + current1 + current2);
}
if (m_FoldColumn != -1) {
if (current1.value(m_FoldColumn) != current2.value(m_FoldColumn)) {
System.err.println("Fold numbers do not match!\n" + current1
+ current2);
}
}
double value1 = current1.value(comparisonColumn);
double value2 = current2.value(comparisonColumn);
pairedStats.add(value1, value2);
}
pairedStats.calculateDerived();
return pairedStats;
}
/**
* Test the class from the command line.
*
* @param args contains options for the instance ttests
*/
public static void main(String args[]) {
try {
PairedCorrectedTTester tt = new PairedCorrectedTTester();
String datasetName = Utils.getOption('t', args);
String compareColStr = Utils.getOption('c', args);
String baseColStr = Utils.getOption('b', args);
boolean summaryOnly = Utils.getFlag('s', args);
boolean rankingOnly = Utils.getFlag('r', args);
try {
if ((datasetName.length() == 0) || (compareColStr.length() == 0)) {
throw new Exception("-t and -c options are required");
}
tt.setOptions(args);
Utils.checkForRemainingOptions(args);
} catch (Exception ex) {
String result = "";
Enumeration
© 2015 - 2025 Weber Informatics LLC | Privacy Policy