All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.experiment.PairedStatsCorrected Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    PairedStatsCorrected.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.experiment;

import weka.core.RevisionUtils;
import weka.core.Statistics;
import weka.core.Utils;

/**
 * A class for storing stats on a paired comparison. This version is
 * based on the corrected resampled t-test statistic, which uses the
 * ratio of the number of test examples/the number of training examples.

* * For more information see:

* * Claude Nadeau and Yoshua Bengio, "Inference for the Generalization Error," * Machine Learning, 2001. * * @author Richard Kirkby ([email protected]) * @version $Revision: 8034 $ */ public class PairedStatsCorrected extends PairedStats { /** The ratio used to correct the significane test */ protected double m_testTrainRatio; /** * Creates a new PairedStatsCorrected object with the supplied * significance level and train/test ratio. * * @param sig the significance level for comparisons * @param testTrainRatio the number test examples/training examples */ public PairedStatsCorrected(double sig, double testTrainRatio) { super(sig); m_testTrainRatio = testTrainRatio; } /** * Calculates the derived statistics (significance etc). */ public void calculateDerived() { xStats.calculateDerived(); yStats.calculateDerived(); differencesStats.calculateDerived(); correlation = Double.NaN; if (!Double.isNaN(xStats.stdDev) && !Double.isNaN(yStats.stdDev) && !Utils.eq(xStats.stdDev, 0)) { double slope = (xySum - xStats.sum * yStats.sum / count) / (xStats.sumSq - xStats.sum * xStats.mean); if (!Utils.eq(yStats.stdDev, 0)) { correlation = slope * xStats.stdDev / yStats.stdDev; } else { correlation = 1.0; } } if (Utils.gr(differencesStats.stdDev, 0)) { double tval = differencesStats.mean / Math.sqrt((1 / count + m_testTrainRatio) * differencesStats.stdDev * differencesStats.stdDev); if (count > 1) { differencesProbability = Statistics.FProbability(tval * tval, 1, (int) count - 1); } else differencesProbability = 1; } else { if (differencesStats.sumSq == 0) { differencesProbability = 1.0; } else { differencesProbability = 0.0; } } differencesSignificance = 0; if (differencesProbability <= sigLevel) { if (xStats.mean > yStats.mean) { differencesSignificance = 1; } else { differencesSignificance = -1; } } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy