All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.gui.beans.PredictionAppender Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    PredictionAppender.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.gui.beans;

import java.awt.BorderLayout;
import java.beans.EventSetDescriptor;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;

import javax.swing.JPanel;

import weka.clusterers.DensityBasedClusterer;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;

/**
 * Bean that can can accept batch or incremental classifier events and produce
 * dataset or instance events which contain instances with predictions appended.
 * 
 * @author Mark Hall
 * @version $Revision: 10813 $
 */
public class PredictionAppender extends JPanel implements DataSource,
  TrainingSetProducer, TestSetProducer, Visible, BeanCommon, EventConstraints,
  BatchClassifierListener, IncrementalClassifierListener,
  BatchClustererListener, Serializable {

  /** for serialization */
  private static final long serialVersionUID = -2987740065058976673L;

  /**
   * Objects listenening for dataset events
   */
  protected Vector m_dataSourceListeners =
    new Vector();

  /**
   * Objects listening for instances events
   */
  protected Vector m_instanceListeners =
    new Vector();

  /**
   * Objects listening for training set events
   */
  protected Vector m_trainingSetListeners =
    new Vector();;

  /**
   * Objects listening for test set events
   */
  protected Vector m_testSetListeners =
    new Vector();

  /**
   * Non null if this object is a target for any events.
   */
  protected Object m_listenee = null;

  /**
   * Format of instances to be produced.
   */
  protected Instances m_format;

  protected BeanVisual m_visual = new BeanVisual("PredictionAppender",
    BeanVisual.ICON_PATH + "PredictionAppender.gif", BeanVisual.ICON_PATH
      + "PredictionAppender_animated.gif");

  /**
   * Append classifier's predicted probabilities (if the class is discrete and
   * the classifier is a distribution classifier)
   */
  protected boolean m_appendProbabilities;

  protected transient weka.gui.Logger m_logger;

  protected transient List m_stringAttIndexes;

  /**
   * Global description of this bean
   * 
   * @return a String value
   */
  public String globalInfo() {
    return "Accepts batch or incremental classifier events and "
      + "produces a new data set with classifier predictions appended.";
  }

  /**
   * Creates a new PredictionAppender instance.
   */
  public PredictionAppender() {
    setLayout(new BorderLayout());
    add(m_visual, BorderLayout.CENTER);
  }

  /**
   * Set a custom (descriptive) name for this bean
   * 
   * @param name the name to use
   */
  @Override
  public void setCustomName(String name) {
    m_visual.setText(name);
  }

  /**
   * Get the custom (descriptive) name for this bean (if one has been set)
   * 
   * @return the custom name (or the default name)
   */
  @Override
  public String getCustomName() {
    return m_visual.getText();
  }

  /**
   * Return a tip text suitable for displaying in a GUI
   * 
   * @return a String value
   */
  public String appendPredictedProbabilitiesTipText() {
    return "append probabilities rather than labels for discrete class "
      + "predictions";
  }

  /**
   * Return true if predicted probabilities are to be appended rather than class
   * value
   * 
   * @return a boolean value
   */
  public boolean getAppendPredictedProbabilities() {
    return m_appendProbabilities;
  }

  /**
   * Set whether to append predicted probabilities rather than class value (for
   * discrete class data sets)
   * 
   * @param ap a boolean value
   */
  public void setAppendPredictedProbabilities(boolean ap) {
    m_appendProbabilities = ap;
  }

  /**
   * Add a training set listener
   * 
   * @param tsl a TrainingSetListener value
   */
  @Override
  public void addTrainingSetListener(TrainingSetListener tsl) {
    // TODO Auto-generated method stub
    m_trainingSetListeners.addElement(tsl);
    // pass on any format that we might have determined so far
    if (m_format != null) {
      TrainingSetEvent e = new TrainingSetEvent(this, m_format);
      tsl.acceptTrainingSet(e);
    }
  }

  /**
   * Remove a training set listener
   * 
   * @param tsl a TrainingSetListener value
   */
  @Override
  public void removeTrainingSetListener(TrainingSetListener tsl) {
    m_trainingSetListeners.removeElement(tsl);
  }

  /**
   * Add a test set listener
   * 
   * @param tsl a TestSetListener value
   */
  @Override
  public void addTestSetListener(TestSetListener tsl) {
    m_testSetListeners.addElement(tsl);
    // pass on any format that we might have determined so far
    if (m_format != null) {
      TestSetEvent e = new TestSetEvent(this, m_format);
      tsl.acceptTestSet(e);
    }
  }

  /**
   * Remove a test set listener
   * 
   * @param tsl a TestSetListener value
   */
  @Override
  public void removeTestSetListener(TestSetListener tsl) {
    m_testSetListeners.removeElement(tsl);
  }

  /**
   * Add a datasource listener
   * 
   * @param dsl a DataSourceListener value
   */
  @Override
  public synchronized void addDataSourceListener(DataSourceListener dsl) {
    m_dataSourceListeners.addElement(dsl);
    // pass on any format that we might have determined so far
    if (m_format != null) {
      DataSetEvent e = new DataSetEvent(this, m_format);
      dsl.acceptDataSet(e);
    }
  }

  /**
   * Remove a datasource listener
   * 
   * @param dsl a DataSourceListener value
   */
  @Override
  public synchronized void removeDataSourceListener(DataSourceListener dsl) {
    m_dataSourceListeners.remove(dsl);
  }

  /**
   * Add an instance listener
   * 
   * @param dsl a InstanceListener value
   */
  @Override
  public synchronized void addInstanceListener(InstanceListener dsl) {
    m_instanceListeners.addElement(dsl);
    // pass on any format that we might have determined so far
    if (m_format != null) {
      InstanceEvent e = new InstanceEvent(this, m_format);
      dsl.acceptInstance(e);
    }
  }

  /**
   * Remove an instance listener
   * 
   * @param dsl a InstanceListener value
   */
  @Override
  public synchronized void removeInstanceListener(InstanceListener dsl) {
    m_instanceListeners.remove(dsl);
  }

  /**
   * Set the visual for this data source
   * 
   * @param newVisual a BeanVisual value
   */
  @Override
  public void setVisual(BeanVisual newVisual) {
    m_visual = newVisual;
  }

  /**
   * Get the visual being used by this data source.
   * 
   */
  @Override
  public BeanVisual getVisual() {
    return m_visual;
  }

  /**
   * Use the default images for a data source
   * 
   */
  @Override
  public void useDefaultVisual() {
    m_visual.loadIcons(BeanVisual.ICON_PATH + "PredictionAppender.gif",
      BeanVisual.ICON_PATH + "PredictionAppender_animated.gif");
  }

  protected InstanceEvent m_instanceEvent;
  protected transient StreamThroughput m_throughput;

  /**
   * Accept and process an incremental classifier event
   * 
   * @param e an IncrementalClassifierEvent value
   */
  @Override
  public void acceptClassifier(IncrementalClassifierEvent e) {
    weka.classifiers.Classifier classifier = e.getClassifier();
    Instance currentI = e.getCurrentInstance();
    int status = e.getStatus();
    int oldNumAtts = 0;
    if (status == IncrementalClassifierEvent.NEW_BATCH) {
      oldNumAtts = e.getStructure().numAttributes();
      m_throughput = new StreamThroughput(statusMessagePrefix());
    } else {
      if (currentI != null) {
        oldNumAtts = currentI.dataset().numAttributes();
      }
    }
    if (status == IncrementalClassifierEvent.NEW_BATCH) {
      m_instanceEvent = new InstanceEvent(this, null, 0);
      // create new header structure
      Instances oldStructure = new Instances(e.getStructure(), 0);
      // String relationNameModifier = oldStructure.relationName()
      // +"_with predictions";

      // check for string attributes
      m_stringAttIndexes = new ArrayList();
      for (int i = 0; i < e.getStructure().numAttributes(); i++) {
        if (e.getStructure().attribute(i).isString()) {
          m_stringAttIndexes.add(new Integer(i));
        }
      }

      String relationNameModifier = "_with predictions";
      // +"_with predictions";
      if (!m_appendProbabilities || oldStructure.classAttribute().isNumeric()) {
        try {
          m_format =
            makeDataSetClass(oldStructure, oldStructure, classifier,
              relationNameModifier);
        } catch (Exception ex) {
          ex.printStackTrace();
          return;
        }
      } else if (m_appendProbabilities) {
        try {
          m_format =
            makeDataSetProbabilities(oldStructure, oldStructure, classifier,
              relationNameModifier);

        } catch (Exception ex) {
          ex.printStackTrace();
          return;
        }
      }
      // Pass on the structure
      m_instanceEvent.setStructure(m_format);
      notifyInstanceAvailable(m_instanceEvent);
      return;
    }

    if (currentI != null) {
      m_throughput.updateStart();
      double[] instanceVals = new double[m_format.numAttributes()];
      Instance newInst = null;
      try {
        // process the actual instance
        for (int i = 0; i < oldNumAtts; i++) {
          instanceVals[i] = currentI.value(i);
        }
        if (!m_appendProbabilities
          || currentI.dataset().classAttribute().isNumeric()) {
          double predClass = classifier.classifyInstance(currentI);
          instanceVals[instanceVals.length - 1] = predClass;
        } else if (m_appendProbabilities) {
          double[] preds = classifier.distributionForInstance(currentI);
          for (int i = oldNumAtts; i < instanceVals.length; i++) {
            instanceVals[i] = preds[i - oldNumAtts];
          }
        }
      } catch (Exception ex) {
        ex.printStackTrace();
        return;
      } finally {
        newInst = new DenseInstance(currentI.weight(), instanceVals);
        newInst.setDataset(m_format);
        // check for string attributes
        if (m_stringAttIndexes != null) {
          for (int i = 0; i < m_stringAttIndexes.size(); i++) {
            int index = m_stringAttIndexes.get(i);
            m_format.attribute(m_stringAttIndexes.get(i)).setStringValue(
              currentI.stringValue(index));
          }
        }

        m_instanceEvent.setInstance(newInst);
        m_instanceEvent.setStatus(status);
        m_throughput.updateEnd(m_logger);
        // notify listeners
        notifyInstanceAvailable(m_instanceEvent);
      }
    } else {
      m_instanceEvent.setInstance(null); // end of stream
      // notify listeners
      notifyInstanceAvailable(m_instanceEvent);
    }

    if (status == IncrementalClassifierEvent.BATCH_FINISHED || currentI == null) {
      // clean up
      // m_incrementalStructure = null;
      m_instanceEvent = null;
      m_throughput.finished(m_logger);
    }
  }

  /**
   * Accept and process a batch classifier event
   * 
   * @param e a BatchClassifierEvent value
   */
  @Override
  public void acceptClassifier(BatchClassifierEvent e) {
    if (m_dataSourceListeners.size() > 0 || m_trainingSetListeners.size() > 0
      || m_testSetListeners.size() > 0) {

      if (e.getTestSet() == null) {
        // can't append predictions
        return;
      }

      if ((e.getTestSet().isStructureOnly() || e.getTestSet().getDataSet()
        .numInstances() == 0)
        && e.getTestSet().getDataSet().classIndex() < 0) {
        return; // don't do anything or make a fuss if there is no class set in
                // a structure only data set
      }

      if (e.getTestSet().getDataSet().classIndex() < 0) {
        if (m_logger != null) {
          m_logger.logMessage("[PredictionAppender] " + statusMessagePrefix()
            + "No class attribute set in the data!");
          m_logger.statusMessage(statusMessagePrefix()
            + "ERROR: Can't append probablities - see log.");
        }
        stop();
        return;
      }

      Instances testSet = e.getTestSet().getDataSet();
      Instances trainSet = e.getTrainSet().getDataSet();
      int setNum = e.getSetNumber();
      int maxNum = e.getMaxSetNumber();

      weka.classifiers.Classifier classifier = e.getClassifier();
      String relationNameModifier =
        "_set_" + e.getSetNumber() + "_of_" + e.getMaxSetNumber();
      if (!m_appendProbabilities || testSet.classAttribute().isNumeric()) {
        try {
          Instances newTestSetInstances =
            makeDataSetClass(testSet, trainSet, classifier,
              relationNameModifier);
          Instances newTrainingSetInstances =
            makeDataSetClass(trainSet, trainSet, classifier,
              relationNameModifier);

          if (m_trainingSetListeners.size() > 0) {
            TrainingSetEvent tse =
              new TrainingSetEvent(this, new Instances(newTrainingSetInstances,
                0));
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTrainingSetAvailable(tse);
            // fill in predicted values
            for (int i = 0; i < trainSet.numInstances(); i++) {
              double predClass =
                classifier.classifyInstance(trainSet.instance(i));
              newTrainingSetInstances.instance(i).setValue(
                newTrainingSetInstances.numAttributes() - 1, predClass);
            }
            tse = new TrainingSetEvent(this, newTrainingSetInstances);
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTrainingSetAvailable(tse);
          }

          if (m_testSetListeners.size() > 0) {
            TestSetEvent tse =
              new TestSetEvent(this, new Instances(newTestSetInstances, 0));
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTestSetAvailable(tse);
          }
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, new Instances(
              newTestSetInstances, 0)));
          }
          if (e.getTestSet().isStructureOnly()) {
            m_format = newTestSetInstances;
          }
          if (m_dataSourceListeners.size() > 0 || m_testSetListeners.size() > 0) {
            // fill in predicted values
            for (int i = 0; i < testSet.numInstances(); i++) {
              Instance tempInst = testSet.instance(i);

              // if the class value is missing, then copy the instance
              // and set the data set to the training data. This is
              // just in case this test data was loaded from a CSV file
              // with all missing values for a nominal class (in this
              // case we have no information on the legal class values
              // in the test data)
              if (tempInst.isMissing(tempInst.classIndex())
                && !(classifier instanceof weka.classifiers.misc.InputMappedClassifier)) {
                tempInst = (Instance) testSet.instance(i).copy();
                tempInst.setDataset(trainSet);
              }
              double predClass = classifier.classifyInstance(tempInst);
              newTestSetInstances.instance(i).setValue(
                newTestSetInstances.numAttributes() - 1, predClass);
            }
          }
          // notify listeners
          if (m_testSetListeners.size() > 0) {
            TestSetEvent tse = new TestSetEvent(this, newTestSetInstances);
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTestSetAvailable(tse);
          }
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, newTestSetInstances));
          }
          return;
        } catch (Exception ex) {
          ex.printStackTrace();
        }
      }
      if (m_appendProbabilities) {
        try {
          Instances newTestSetInstances =
            makeDataSetProbabilities(testSet, trainSet, classifier,
              relationNameModifier);
          Instances newTrainingSetInstances =
            makeDataSetProbabilities(trainSet, trainSet, classifier,
              relationNameModifier);
          if (m_trainingSetListeners.size() > 0) {
            TrainingSetEvent tse =
              new TrainingSetEvent(this, new Instances(newTrainingSetInstances,
                0));
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTrainingSetAvailable(tse);
            // fill in predicted probabilities
            for (int i = 0; i < trainSet.numInstances(); i++) {
              double[] preds =
                classifier.distributionForInstance(trainSet.instance(i));
              for (int j = 0; j < trainSet.classAttribute().numValues(); j++) {
                newTrainingSetInstances.instance(i).setValue(
                  trainSet.numAttributes() + j, preds[j]);
              }
            }
            tse = new TrainingSetEvent(this, newTrainingSetInstances);
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTrainingSetAvailable(tse);
          }
          if (m_testSetListeners.size() > 0) {
            TestSetEvent tse =
              new TestSetEvent(this, new Instances(newTestSetInstances, 0));
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTestSetAvailable(tse);
          }
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, new Instances(
              newTestSetInstances, 0)));
          }
          if (e.getTestSet().isStructureOnly()) {
            m_format = newTestSetInstances;
          }
          if (m_dataSourceListeners.size() > 0 || m_testSetListeners.size() > 0) {
            // fill in predicted probabilities
            for (int i = 0; i < testSet.numInstances(); i++) {
              Instance tempInst = testSet.instance(i);

              // if the class value is missing, then copy the instance
              // and set the data set to the training data. This is
              // just in case this test data was loaded from a CSV file
              // with all missing values for a nominal class (in this
              // case we have no information on the legal class values
              // in the test data)
              if (tempInst.isMissing(tempInst.classIndex())
                && !(classifier instanceof weka.classifiers.misc.InputMappedClassifier)) {
                tempInst = (Instance) testSet.instance(i).copy();
                tempInst.setDataset(trainSet);
              }

              double[] preds = classifier.distributionForInstance(tempInst);
              for (int j = 0; j < tempInst.classAttribute().numValues(); j++) {
                newTestSetInstances.instance(i).setValue(
                  testSet.numAttributes() + j, preds[j]);
              }
            }
          }

          // notify listeners
          if (m_testSetListeners.size() > 0) {
            TestSetEvent tse = new TestSetEvent(this, newTestSetInstances);
            tse.m_setNumber = setNum;
            tse.m_maxSetNumber = maxNum;
            notifyTestSetAvailable(tse);
          }
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, newTestSetInstances));
          }
        } catch (Exception ex) {
          ex.printStackTrace();
        }
      }
    }
  }

  /**
   * Accept and process a batch clusterer event
   * 
   * @param e a BatchClassifierEvent value
   */
  @Override
  public void acceptClusterer(BatchClustererEvent e) {
    if (m_dataSourceListeners.size() > 0 || m_trainingSetListeners.size() > 0
      || m_testSetListeners.size() > 0) {

      if (e.getTestSet().isStructureOnly()) {
        return;
      }
      Instances testSet = e.getTestSet().getDataSet();

      weka.clusterers.Clusterer clusterer = e.getClusterer();
      String test;
      if (e.getTestOrTrain() == 0) {
        test = "test";
      } else {
        test = "training";
      }
      String relationNameModifier =
        "_" + test + "_" + e.getSetNumber() + "_of_" + e.getMaxSetNumber();
      if (!m_appendProbabilities
        || !(clusterer instanceof DensityBasedClusterer)) {
        if (m_appendProbabilities
          && !(clusterer instanceof DensityBasedClusterer)) {
          System.err
            .println("Only density based clusterers can append probabilities. Instead cluster will be assigned for each instance.");
          if (m_logger != null) {
            m_logger
              .logMessage("[PredictionAppender] "
                + statusMessagePrefix()
                + " Only density based clusterers can "
                + "append probabilities. Instead cluster will be assigned for each "
                + "instance.");
            m_logger
              .statusMessage(statusMessagePrefix()
                + "WARNING: Only density based clusterers can append probabilities. "
                + "Instead cluster will be assigned for each instance.");
          }
        }
        try {
          Instances newInstances =
            makeClusterDataSetClass(testSet, clusterer, relationNameModifier);

          // data source listeners get both train and test sets
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, new Instances(
              newInstances, 0)));
          }

          if (m_trainingSetListeners.size() > 0 && e.getTestOrTrain() > 0) {
            TrainingSetEvent tse =
              new TrainingSetEvent(this, new Instances(newInstances, 0));
            tse.m_setNumber = e.getSetNumber();
            tse.m_maxSetNumber = e.getMaxSetNumber();
            notifyTrainingSetAvailable(tse);
          }

          if (m_testSetListeners.size() > 0 && e.getTestOrTrain() == 0) {
            TestSetEvent tse =
              new TestSetEvent(this, new Instances(newInstances, 0));
            tse.m_setNumber = e.getSetNumber();
            tse.m_maxSetNumber = e.getMaxSetNumber();
            notifyTestSetAvailable(tse);
          }

          // fill in predicted values
          for (int i = 0; i < testSet.numInstances(); i++) {
            double predCluster = clusterer.clusterInstance(testSet.instance(i));
            newInstances.instance(i).setValue(newInstances.numAttributes() - 1,
              predCluster);
          }
          // notify listeners
          if (m_dataSourceListeners.size() > 0) {
            notifyDataSetAvailable(new DataSetEvent(this, newInstances));
          }
          if (m_trainingSetListeners.size() > 0 && e.getTestOrTrain() > 0) {
            TrainingSetEvent tse = new TrainingSetEvent(this, newInstances);
            tse.m_setNumber = e.getSetNumber();
            tse.m_maxSetNumber = e.getMaxSetNumber();
            notifyTrainingSetAvailable(tse);
          }
          if (m_testSetListeners.size() > 0 && e.getTestOrTrain() == 0) {
            TestSetEvent tse = new TestSetEvent(this, newInstances);
            tse.m_setNumber = e.getSetNumber();
            tse.m_maxSetNumber = e.getMaxSetNumber();
            notifyTestSetAvailable(tse);
          }

          return;
        } catch (Exception ex) {
          ex.printStackTrace();
        }
      } else {
        try {
          Instances newInstances =
            makeClusterDataSetProbabilities(testSet, clusterer,
              relationNameModifier);
          notifyDataSetAvailable(new DataSetEvent(this, new Instances(
            newInstances, 0)));

          // fill in predicted probabilities
          for (int i = 0; i < testSet.numInstances(); i++) {
            double[] probs =
              clusterer.distributionForInstance(testSet.instance(i));
            for (int j = 0; j < clusterer.numberOfClusters(); j++) {
              newInstances.instance(i).setValue(testSet.numAttributes() + j,
                probs[j]);
            }
          }
          // notify listeners
          notifyDataSetAvailable(new DataSetEvent(this, newInstances));
        } catch (Exception ex) {
          ex.printStackTrace();
        }
      }
    }
  }

  private Instances makeDataSetProbabilities(Instances insts, Instances format,
    weka.classifiers.Classifier classifier, String relationNameModifier)
    throws Exception {

    // adjust structure for InputMappedClassifier (if necessary)
    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      format =
        ((weka.classifiers.misc.InputMappedClassifier) classifier)
          .getModelHeader(new Instances(format, 0));
    }

    String classifierName = classifier.getClass().getName();
    classifierName =
      classifierName.substring(classifierName.lastIndexOf('.') + 1,
        classifierName.length());
    Instances newInstances = new Instances(insts);
    for (int i = 0; i < format.classAttribute().numValues(); i++) {
      weka.filters.unsupervised.attribute.Add addF =
        new weka.filters.unsupervised.attribute.Add();
      addF.setAttributeIndex("last");
      addF.setAttributeName(classifierName + "_prob_"
        + format.classAttribute().value(i));
      addF.setInputFormat(newInstances);
      newInstances = weka.filters.Filter.useFilter(newInstances, addF);
    }
    newInstances.setRelationName(insts.relationName() + relationNameModifier);
    return newInstances;
  }

  private Instances makeDataSetClass(Instances insts, Instances structure,
    weka.classifiers.Classifier classifier, String relationNameModifier)
    throws Exception {

    // adjust structure for InputMappedClassifier (if necessary)
    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      structure =
        ((weka.classifiers.misc.InputMappedClassifier) classifier)
          .getModelHeader(new Instances(structure, 0));
    }

    weka.filters.unsupervised.attribute.Add addF =
      new weka.filters.unsupervised.attribute.Add();
    addF.setAttributeIndex("last");
    String classifierName = classifier.getClass().getName();
    classifierName =
      classifierName.substring(classifierName.lastIndexOf('.') + 1,
        classifierName.length());
    addF.setAttributeName("class_predicted_by: " + classifierName);
    if (structure.classAttribute().isNominal()) {
      String classLabels = "";
      Enumeration enu = structure.classAttribute().enumerateValues();
      classLabels += (String) enu.nextElement();
      while (enu.hasMoreElements()) {
        classLabels += "," + (String) enu.nextElement();
      }
      addF.setNominalLabels(classLabels);
    }
    addF.setInputFormat(insts);

    Instances newInstances = weka.filters.Filter.useFilter(insts, addF);
    newInstances.setRelationName(insts.relationName() + relationNameModifier);
    return newInstances;
  }

  private Instances makeClusterDataSetProbabilities(Instances format,
    weka.clusterers.Clusterer clusterer, String relationNameModifier)
    throws Exception {
    Instances newInstances = new Instances(format);
    for (int i = 0; i < clusterer.numberOfClusters(); i++) {
      weka.filters.unsupervised.attribute.Add addF =
        new weka.filters.unsupervised.attribute.Add();
      addF.setAttributeIndex("last");
      addF.setAttributeName("prob_cluster" + i);
      addF.setInputFormat(newInstances);
      newInstances = weka.filters.Filter.useFilter(newInstances, addF);
    }
    newInstances.setRelationName(format.relationName() + relationNameModifier);
    return newInstances;
  }

  private Instances makeClusterDataSetClass(Instances format,
    weka.clusterers.Clusterer clusterer, String relationNameModifier)
    throws Exception {

    weka.filters.unsupervised.attribute.Add addF =
      new weka.filters.unsupervised.attribute.Add();
    addF.setAttributeIndex("last");
    String clustererName = clusterer.getClass().getName();
    clustererName =
      clustererName.substring(clustererName.lastIndexOf('.') + 1,
        clustererName.length());
    addF.setAttributeName("assigned_cluster: " + clustererName);
    // if (format.classAttribute().isNominal()) {
    String clusterLabels = "0";
    /*
     * Enumeration enu = format.classAttribute().enumerateValues();
     * clusterLabels += (String)enu.nextElement(); while (enu.hasMoreElements())
     * { clusterLabels += ","+(String)enu.nextElement(); }
     */
    for (int i = 1; i <= clusterer.numberOfClusters() - 1; i++) {
      clusterLabels += "," + i;
    }
    addF.setNominalLabels(clusterLabels);
    // }
    addF.setInputFormat(format);

    Instances newInstances = weka.filters.Filter.useFilter(format, addF);
    newInstances.setRelationName(format.relationName() + relationNameModifier);
    return newInstances;
  }

  /**
   * Notify all instance listeners that an instance is available
   * 
   * @param e an InstanceEvent value
   */
  @SuppressWarnings("unchecked")
  protected void notifyInstanceAvailable(InstanceEvent e) {
    Vector l;
    synchronized (this) {
      l = (Vector) m_instanceListeners.clone();
    }

    if (l.size() > 0) {
      for (int i = 0; i < l.size(); i++) {
        l.elementAt(i).acceptInstance(e);
      }
    }
  }

  /**
   * Notify all Data source listeners that a data set is available
   * 
   * @param e a DataSetEvent value
   */
  @SuppressWarnings("unchecked")
  protected void notifyDataSetAvailable(DataSetEvent e) {
    Vector l;
    synchronized (this) {
      l = (Vector) m_dataSourceListeners.clone();
    }

    if (l.size() > 0) {
      for (int i = 0; i < l.size(); i++) {
        l.elementAt(i).acceptDataSet(e);
      }
    }
  }

  /**
   * Notify all test set listeners that a test set is available
   * 
   * @param e a TestSetEvent value
   */
  @SuppressWarnings("unchecked")
  protected void notifyTestSetAvailable(TestSetEvent e) {
    Vector l;
    synchronized (this) {
      l = (Vector) m_testSetListeners.clone();
    }

    if (l.size() > 0) {
      for (int i = 0; i < l.size(); i++) {
        l.elementAt(i).acceptTestSet(e);
      }
    }
  }

  /**
   * Notify all test set listeners that a test set is available
   * 
   * @param e a TestSetEvent value
   */
  @SuppressWarnings("unchecked")
  protected void notifyTrainingSetAvailable(TrainingSetEvent e) {
    Vector l;
    synchronized (this) {
      l = (Vector) m_trainingSetListeners.clone();
    }

    if (l.size() > 0) {
      for (int i = 0; i < l.size(); i++) {
        l.elementAt(i).acceptTrainingSet(e);
      }
    }
  }

  /**
   * Set a logger
   * 
   * @param logger a weka.gui.Logger value
   */
  @Override
  public void setLog(weka.gui.Logger logger) {
    m_logger = logger;
  }

  @Override
  public void stop() {
    // tell the listenee (upstream bean) to stop
    if (m_listenee instanceof BeanCommon) {
      ((BeanCommon) m_listenee).stop();
    }
  }

  /**
   * Returns true if. at this time, the bean is busy with some (i.e. perhaps a
   * worker thread is performing some calculation).
   * 
   * @return true if the bean is busy.
   */
  @Override
  public boolean isBusy() {
    return false;
  }

  /**
   * Returns true if, at this time, the object will accept a connection
   * according to the supplied event name
   * 
   * @param eventName the event
   * @return true if the object will accept a connection
   */
  @Override
  public boolean connectionAllowed(String eventName) {
    return (m_listenee == null);
  }

  /**
   * Returns true if, at this time, the object will accept a connection
   * according to the supplied EventSetDescriptor
   * 
   * @param esd the EventSetDescriptor
   * @return true if the object will accept a connection
   */
  @Override
  public boolean connectionAllowed(EventSetDescriptor esd) {
    return connectionAllowed(esd.getName());
  }

  /**
   * Notify this object that it has been registered as a listener with a source
   * with respect to the supplied event name
   * 
   * @param eventName
   * @param source the source with which this object has been registered as a
   *          listener
   */
  @Override
  public synchronized void connectionNotification(String eventName,
    Object source) {
    if (connectionAllowed(eventName)) {
      m_listenee = source;
    }
  }

  /**
   * Notify this object that it has been deregistered as a listener with a
   * source with respect to the supplied event name
   * 
   * @param eventName the event name
   * @param source the source with which this object has been registered as a
   *          listener
   */
  @Override
  public synchronized void disconnectionNotification(String eventName,
    Object source) {
    if (m_listenee == source) {
      m_listenee = null;
      m_format = null; // assume any calculated instance format if now invalid
    }
  }

  /**
   * Returns true, if at the current time, the named event could be generated.
   * Assumes that supplied event names are names of events that could be
   * generated by this bean.
   * 
   * @param eventName the name of the event in question
   * @return true if the named event could be generated at this point in time
   */
  @Override
  public boolean eventGeneratable(String eventName) {
    if (m_listenee == null) {
      return false;
    }

    if (m_listenee instanceof EventConstraints) {
      if (eventName.equals("instance")) {
        if (!((EventConstraints) m_listenee)
          .eventGeneratable("incrementalClassifier")) {
          return false;
        }
      }
      if (eventName.equals("dataSet") || eventName.equals("trainingSet")
        || eventName.equals("testSet")) {
        if (((EventConstraints) m_listenee).eventGeneratable("batchClassifier")) {
          return true;
        }
        if (((EventConstraints) m_listenee).eventGeneratable("batchClusterer")) {
          return true;
        }
        return false;
      }
    }
    return true;
  }

  private String statusMessagePrefix() {
    return getCustomName() + "$" + hashCode() + "|";
  }
}