weka.knowledgeflow.steps.ModelPerformanceChart Maven / Gradle / Ivy
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* ModelPerformanceChart.java
* Copyright (C) 2015 University of Waikato, Hamilton, New Zealand
*
*/
package weka.knowledgeflow.steps;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.OptionMetadata;
import weka.core.WekaException;
import weka.gui.ProgrammaticProperty;
import weka.gui.beans.OffscreenChartRenderer;
import weka.core.PluginManager;
import weka.gui.beans.WekaOffscreenChartRenderer;
import weka.gui.knowledgeflow.KFGUIConsts;
import weka.gui.visualize.PlotData2D;
import weka.knowledgeflow.Data;
import weka.knowledgeflow.StepManager;
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
/**
* A Step that collects and displays either classifier error plots or threshold
* curves
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: $
*/
@KFStep(name = "ModelPerformanceChart", category = "Visualization",
toolTipText = "Visualize performance charts (such as ROC).",
iconPath = KFGUIConsts.BASE_ICON_PATH + "ModelPerformanceChart.gif")
public class ModelPerformanceChart extends BaseStep implements DataCollector {
private static final long serialVersionUID = 6166590810777938147L;
/** Current set of plots. First element is the master plot */
protected List m_plots = new ArrayList();
/** For rendering plots to encapsulate in Image connections */
protected transient List m_offscreenPlotData;
protected transient List m_thresholdSeriesTitles;
protected transient OffscreenChartRenderer m_offscreenRenderer;
/** Name of the renderer to use for offscreen chart rendering */
protected String m_offscreenRendererName = "Weka Chart Renderer";
/**
* The name of the attribute to use for the x-axis of offscreen plots. If left
* empty, False Positive Rate is used for threshold curves
*/
protected String m_xAxis = "";
/**
* The name of the attribute to use for the y-axis of offscreen plots. If left
* empty, True Positive Rate is used for threshold curves
*/
protected String m_yAxis = "";
/**
* Additional options for the offscreen renderer
*/
protected String m_additionalOptions = "";
/** Width of offscreen plots */
protected String m_width = "500";
/** Height of offscreen plots */
protected String m_height = "400";
/** True if the collected plots contain threshold data */
protected boolean m_dataIsThresholdData;
/**
* Set the name of the attribute for the x-axis in offscreen plots. This
* defaults to "False Positive Rate" for threshold curves if not specified.
*
* @param xAxis the name of the xAxis
*/
@OptionMetadata(displayName = "X-axis attribute",
description = "Attribute name " + "or /first, /last or /",
displayOrder = 1)
public void setOffscreenXAxis(String xAxis) {
m_xAxis = xAxis;
}
/**
* Get the name of the attribute for the x-axis in offscreen plots
*
* @return the name of the xAxis
*/
public String getOffscreenXAxis() {
return m_xAxis;
}
/**
* Set the name of the attribute for the y-axis in offscreen plots. This
* defaults to "True Positive Rate" for threshold curves if not specified.
*
* @param yAxis the name of the xAxis
*/
@OptionMetadata(displayName = "Y-axis attribute",
description = "Attribute name " + "or /first, /last or /",
displayOrder = 2)
public void setOffscreenYAxis(String yAxis) {
m_yAxis = yAxis;
}
/**
* Get the name of the attribute for the y-axix of offscreen plots.
*
* @return the name of the yAxis.
*/
public String getOffscreenYAxis() {
return m_yAxis;
}
/**
* Set the width (in pixels) of the offscreen image to generate.
*
* @param width the width in pixels.
*/
@OptionMetadata(displayName = "Chart width (pixels)",
description = "Width of the rendered chart", displayOrder = 3)
public void setOffscreenWidth(String width) {
m_width = width;
}
/**
* Get the width (in pixels) of the offscreen image to generate.
*
* @return the width in pixels.
*/
public String getOffscreenWidth() {
return m_width;
}
/**
* Set the height (in pixels) of the offscreen image to generate
*
* @param height the height in pixels
*/
@OptionMetadata(displayName = "Chart height (pixels)",
description = "Height of the rendered chart", displayOrder = 4)
public void setOffscreenHeight(String height) {
m_height = height;
}
/**
* Get the height (in pixels) of the offscreen image to generate
*
* @return the height in pixels
*/
public String getOffscreenHeight() {
return m_height;
}
/**
* Set the name of the renderer to use for offscreen chart rendering
* operations
*
* @param rendererName the name of the renderer to use
*/
@ProgrammaticProperty
public void setOffscreenRendererName(String rendererName) {
m_offscreenRendererName = rendererName;
m_offscreenRenderer = null;
}
/**
* Get the name of the renderer to use for offscreen chart rendering
* operations
*
* @return the name of the renderer to use
*/
public String getOffscreenRendererName() {
return m_offscreenRendererName;
}
/**
* Set the additional options for the offscreen renderer
*
* @param additional additional options
*/
@ProgrammaticProperty
public void setOffscreenAdditionalOpts(String additional) {
m_additionalOptions = additional;
}
/**
* Get the additional options for the offscreen renderer
*
* @return the additional options
*/
public String getOffscreenAdditionalOpts() {
return m_additionalOptions;
}
/**
* Configures the offscreen renderer to use
*/
protected void setupOffscreenRenderer() {
getStepManager().logDetailed(
"Initializing offscreen renderer: " + getOffscreenRendererName());
if (m_offscreenRenderer == null) {
if (m_offscreenRendererName == null
|| m_offscreenRendererName.length() == 0) {
m_offscreenRenderer = new WekaOffscreenChartRenderer();
return;
}
if (m_offscreenRendererName.equalsIgnoreCase("weka chart renderer")) {
m_offscreenRenderer = new WekaOffscreenChartRenderer();
} else {
try {
Object r =
PluginManager.getPluginInstance(
"weka.gui.beans.OffscreenChartRenderer", m_offscreenRendererName);
if (r != null && r instanceof weka.gui.beans.OffscreenChartRenderer) {
m_offscreenRenderer = (OffscreenChartRenderer) r;
} else {
// use built-in default
getStepManager().logWarning(
"Offscreen renderer '" + getOffscreenRendererName()
+ "' is not available, using default weka chart renderer "
+ "instead");
m_offscreenRenderer = new WekaOffscreenChartRenderer();
}
} catch (Exception ex) {
// use built-in default
getStepManager().logWarning(
"Offscreen renderer '" + getOffscreenRendererName()
+ "' is not available, using default weka chart renderer "
+ "instead");
m_offscreenRenderer = new WekaOffscreenChartRenderer();
}
}
}
}
/**
* Get a list of incoming connection types that this step can accept. Ideally
* (and if appropriate), this should take into account the state of the step
* and any existing incoming connections. E.g. a step might be able to accept
* one (and only one) incoming batch data connection.
*
* @return a list of incoming connections that this step can accept given its
* current state
*/
@Override
public List getIncomingConnectionTypes() {
List result = new ArrayList();
if (getStepManager().numIncomingConnections() == 0) {
result.add(StepManager.CON_THRESHOLD_DATA);
result.add(StepManager.CON_VISUALIZABLE_ERROR);
} else {
// we can accept multiple inputs of threshold data, as long
// as they are comparable (we assume this)
if (getStepManager().numIncomingConnectionsOfType(
StepManager.CON_THRESHOLD_DATA) > 0) {
result.add(StepManager.CON_THRESHOLD_DATA);
}
}
return result;
}
/**
* Get a list of outgoing connection types that this step can produce. Ideally
* (and if appropriate), this should take into account the state of the step
* and the incoming connections. E.g. depending on what incoming connection is
* present, a step might be able to produce a trainingSet output, a testSet
* output or neither, but not both.
*
* @return a list of outgoing connections that this step can produce
*/
@Override
public List getOutgoingConnectionTypes() {
List result = new ArrayList();
if (getStepManager().numIncomingConnections() > 0) {
result.add(StepManager.CON_IMAGE);
}
return result;
}
/**
* Add a threshold plot to the offscreen data collection
*
* @param thresholdD the plot data to add
* @return the image that was added
* @throws WekaException if a problem occurs
*/
protected BufferedImage addOffscreenThresholdPlot(PlotData2D thresholdD)
throws WekaException {
m_offscreenPlotData.add(thresholdD.getPlotInstances());
m_thresholdSeriesTitles.add(thresholdD.getPlotName());
List options = new ArrayList();
String additional = "-color=/last";
if (m_additionalOptions != null && m_additionalOptions.length() > 0) {
additional = m_additionalOptions;
additional = getStepManager().environmentSubstitute(additional);
}
String[] optsParts = additional.split(",");
for (String p : optsParts) {
options.add(p.trim());
}
String xAxis = "False Positive Rate";
if (m_xAxis != null && m_xAxis.length() > 0) {
xAxis = m_xAxis;
xAxis = getStepManager().environmentSubstitute(xAxis);
}
String yAxis = "True Positive Rate";
if (m_yAxis != null && m_yAxis.length() > 0) {
yAxis = m_yAxis;
yAxis = getStepManager().environmentSubstitute(yAxis);
}
String width = m_width;
String height = m_height;
int defWidth = 500;
int defHeight = 400;
width = getStepManager().environmentSubstitute(width);
height = getStepManager().environmentSubstitute(height);
defWidth = Integer.parseInt(width);
defHeight = Integer.parseInt(height);
List series = new ArrayList();
for (int i = 0; i < m_offscreenPlotData.size(); i++) {
Instances temp = new Instances(m_offscreenPlotData.get(i));
temp.setRelationName(m_thresholdSeriesTitles.get(i));
series.add(temp);
}
try {
return m_offscreenRenderer.renderXYLineChart(defWidth, defHeight, series,
xAxis, yAxis, options);
} catch (Exception ex) {
throw new WekaException(ex);
}
}
/**
* Add an error plot to the offscreen plot collection
*
* @param plotData the plot to add
* @return the image that was added
* @throws WekaException if a problem occurs
*/
protected BufferedImage addOffscreenErrorPlot(PlotData2D plotData)
throws WekaException {
Instances predictedI = plotData.getPlotInstances();
if (predictedI.classAttribute().isNominal()) {
// split the classes out into individual series.
// add a new attribute to hold point sizes - correctly
// classified instances get default point size (2);
// misclassified instances get point size (5).
// WekaOffscreenChartRenderer can take advantage of this
// information - other plugin renderers may or may not
// be able to use it
ArrayList atts = new ArrayList();
for (int i = 0; i < predictedI.numAttributes(); i++) {
atts.add((Attribute) predictedI.attribute(i).copy());
}
atts.add(new Attribute("@@size@@"));
Instances newInsts =
new Instances(predictedI.relationName(), atts,
predictedI.numInstances());
newInsts.setClassIndex(predictedI.classIndex());
for (int i = 0; i < predictedI.numInstances(); i++) {
double[] vals = new double[newInsts.numAttributes()];
for (int j = 0; j < predictedI.numAttributes(); j++) {
vals[j] = predictedI.instance(i).value(j);
}
vals[vals.length - 1] = 2; // default shape size
Instance ni = new DenseInstance(1.0, vals);
newInsts.add(ni);
}
// predicted class attribute is always actualClassIndex - 1
Instances[] classes = new Instances[newInsts.numClasses()];
for (int i = 0; i < newInsts.numClasses(); i++) {
classes[i] = new Instances(newInsts, 0);
classes[i].setRelationName(newInsts.classAttribute().value(i));
}
Instances errors = new Instances(newInsts, 0);
int actualClass = newInsts.classIndex();
for (int i = 0; i < newInsts.numInstances(); i++) {
Instance current = newInsts.instance(i);
classes[(int) current.classValue()].add((Instance) current.copy());
if (current.value(actualClass) != current.value(actualClass - 1)) {
Instance toAdd = (Instance) current.copy();
// larger shape for an error
toAdd.setValue(toAdd.numAttributes() - 1, 5);
// swap predicted and actual class value so
// that the color plotted for the error series
// is that of the predicted class
double actualClassV = toAdd.value(actualClass);
double predictedClassV = toAdd.value(actualClass - 1);
toAdd.setValue(actualClass, predictedClassV);
toAdd.setValue(actualClass - 1, actualClassV);
errors.add(toAdd);
}
}
errors.setRelationName("Errors");
m_offscreenPlotData.add(errors);
for (Instances classe : classes) {
m_offscreenPlotData.add(classe);
}
} else {
// numeric class - have to make a new set of instances
// with the point sizes added as an additional attribute
ArrayList atts = new ArrayList();
for (int i = 0; i < predictedI.numAttributes(); i++) {
atts.add((Attribute) predictedI.attribute(i).copy());
}
atts.add(new Attribute("@@size@@"));
Instances newInsts =
new Instances(predictedI.relationName(), atts,
predictedI.numInstances());
int[] shapeSizes = plotData.getShapeSize();
for (int i = 0; i < predictedI.numInstances(); i++) {
double[] vals = new double[newInsts.numAttributes()];
for (int j = 0; j < predictedI.numAttributes(); j++) {
vals[j] = predictedI.instance(i).value(j);
}
vals[vals.length - 1] = shapeSizes[i];
Instance ni = new DenseInstance(1.0, vals);
newInsts.add(ni);
}
newInsts.setRelationName(predictedI.classAttribute().name());
m_offscreenPlotData.add(newInsts);
}
List options = new ArrayList();
String additional =
"-color=" + predictedI.classAttribute().name() + ",-hasErrors";
if (m_additionalOptions != null && m_additionalOptions.length() > 0) {
additional += "," + m_additionalOptions;
additional = environmentSubstitute(additional);
}
String[] optionsParts = additional.split(",");
for (String p : optionsParts) {
options.add(p.trim());
}
// if (predictedI.classAttribute().isNumeric()) {
options.add("-shapeSize=@@size@@");
// }
String xAxis = m_xAxis;
xAxis = environmentSubstitute(xAxis);
String yAxis = m_yAxis;
yAxis = environmentSubstitute(yAxis);
String width = m_width;
String height = m_height;
int defWidth = 500;
int defHeight = 400;
width = environmentSubstitute(width);
height = environmentSubstitute(height);
defWidth = Integer.parseInt(width);
defHeight = Integer.parseInt(height);
try {
return m_offscreenRenderer.renderXYScatterPlot(defWidth, defHeight,
m_offscreenPlotData, xAxis, yAxis, options);
} catch (Exception e1) {
throw new WekaException(e1);
}
}
/**
* Process incoming data
*
* @param data the data to process
* @throws WekaException if a problem occurs
*/
@Override
public synchronized void processIncoming(Data data) throws WekaException {
getStepManager().processing();
PlotData2D errorD =
(PlotData2D) data.getPayloadElement(StepManager.CON_VISUALIZABLE_ERROR);
PlotData2D thresholdD =
(PlotData2D) data.getPayloadElement(StepManager.CON_THRESHOLD_DATA);
getStepManager().logDetailed(
"Processing "
+ (errorD != null ? " error data " + errorD.getPlotName()
: " threshold data " + thresholdD.getPlotName()));
if (data.getConnectionName().equals(StepManager.CON_VISUALIZABLE_ERROR)) {
m_plots.clear();
m_plots.add(errorD);
m_dataIsThresholdData = false;
if (getStepManager().numOutgoingConnectionsOfType(StepManager.CON_IMAGE) > 0) {
// configure renderer if necessary
setupOffscreenRenderer();
m_offscreenPlotData = new ArrayList();
BufferedImage bi = addOffscreenErrorPlot(errorD);
Data imageD = new Data(StepManager.CON_IMAGE);
imageD.setPayloadElement(StepManager.CON_IMAGE, bi);
getStepManager().outputData(StepManager.CON_IMAGE, imageD);
}
} else if (data.getConnectionName().equals(StepManager.CON_THRESHOLD_DATA)) {
if (m_plots.size() == 0) {
m_plots.add(thresholdD);
} else {
if (!m_plots.get(0).getPlotInstances().relationName()
.equals(thresholdD.getPlotInstances().relationName())) {
m_plots.clear();
}
m_plots.add(thresholdD);
}
m_dataIsThresholdData = true;
if (getStepManager().numOutgoingConnectionsOfType(StepManager.CON_IMAGE) > 0) {
// configure renderer if necessary
setupOffscreenRenderer();
if (m_offscreenPlotData == null || m_offscreenPlotData.size() == 0
|| !m_offscreenPlotData.get(0).relationName()
.equals(thresholdD.getPlotInstances().relationName())) {
m_offscreenPlotData = new ArrayList();
m_thresholdSeriesTitles = new ArrayList();
}
BufferedImage bi = addOffscreenThresholdPlot(thresholdD);
Data imageD = new Data(StepManager.CON_IMAGE);
imageD.setPayloadElement(StepManager.CON_IMAGE, bi);
imageD.setPayloadElement(StepManager.CON_AUX_DATA_TEXT_TITLE,
thresholdD.getPlotName());
getStepManager().outputData(StepManager.CON_IMAGE, imageD);
}
}
getStepManager().finished();
}
/**
* When running in a graphical execution environment a step can make one or
* more popup Viewer components available. These might be used to display
* results, graphics etc. Returning null indicates that the step has no such
* additional graphical views. The map returned by this method should be keyed
* by action name (e.g. "View results"), and values should be fully qualified
* names of the corresponding StepInteractiveView implementation. Furthermore,
* the contents of this map can (and should) be dependent on whether a
* particular viewer should be made available - i.e. if execution hasn't
* occurred yet, or if a particular incoming connection type is not present,
* then it might not be possible to view certain results.
*
* Viewers can implement StepInteractiveView directly (in which case they need
* to extends JPanel), or extends the AbstractInteractiveViewer class. The
* later extends JPanel, uses a BorderLayout, provides a "Close" button and a
* method to add additional buttons.
*
* @return a map of viewer component names, or null if this step has no
* graphical views
*/
@Override
public Map getInteractiveViewers() {
Map views = new LinkedHashMap();
if (m_plots.size() > 0) {
views.put("Show chart",
"weka.gui.knowledgeflow.steps.ModelPerformanceChartInteractiveView");
}
return views;
}
/**
* Get the plots currently stored in this step
*
* @return
*/
public List getPlots() {
return m_plots;
}
/**
* Returns true if the plots being stored are threshold plots
*
* @return true if the plots are threshold plots
*/
public boolean isDataIsThresholdData() {
return m_dataIsThresholdData;
}
/**
* Clear all plot data (both onscreen and offscreen)
*/
public void clearPlotData() {
m_plots.clear();
if (m_offscreenPlotData != null) {
m_offscreenPlotData.clear();
}
}
/**
* Retrieve the data (plots) stored in this step
*
* @return the data stored in this step
*/
@Override
public Object retrieveData() {
Object[] onAndOffScreen = new Object[2];
onAndOffScreen[0] = m_plots;
// onAndOffScreen[1] = m_offscreenPlotData;
onAndOffScreen[1] = m_dataIsThresholdData;
return onAndOffScreen;
}
/**
* Restore the data (plots) for this step
*
* @param data the data to set
* @throws WekaException if a problem occurs
*/
@SuppressWarnings("unchecked")
@Override
public void restoreData(Object data) throws WekaException {
if (!(data instanceof Object[])) {
throw new WekaException("Argument must be a three element array, "
+ "where the first element holds a list of Plot2D objects, the "
+ "second a list of Instances objects and the third "
+ "a boolean - true if the data is threshold data");
}
m_plots = ((List) ((Object[]) data)[0]);
// m_offscreenPlotData = ((List) ((Object[]) data)[1]);
m_dataIsThresholdData = ((Boolean) ((Object[]) data)[1]);
m_offscreenPlotData = new ArrayList();
}
/**
* Initialize the step
*
* @throws WekaException if a problem occurs during initialization
*/
@Override
public void stepInit() throws WekaException {
// nothing to do
}
/**
* Return the fully qualified name of a custom editor component (JComponent)
* to use for editing the properties of the step. This method can return null,
* in which case the system will dynamically generate an editor using the
* GenericObjectEditor
*
* @return the fully qualified name of a step editor component
*/
@Override
public String getCustomEditorForStep() {
return "weka.gui.knowledgeflow.steps.ModelPerformanceChartStepEditorDialog";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy