All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.IteratedSingleClassifierEnhancer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This is the stable version. Apart from bugfixes, this version does not receive any other updates.

There is a newer version: 3.8.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    IteratedSingleClassifierEnhancer.java
 *    Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

/**
 * Abstract utility class for handling settings common to
 * meta classifiers that build an ensemble from a single base learner.
 *
 * @author Eibe Frank ([email protected])
 * @version $Revision: 12505 $
 */
public abstract class IteratedSingleClassifierEnhancer
  extends SingleClassifierEnhancer {

  /** for serialization */
  private static final long serialVersionUID = -6217979135443319724L;

  /** Array for storing the generated base classifiers. */
  protected Classifier[] m_Classifiers;

  /** The number of iterations. */
  protected int m_NumIterations = defaultNumberOfIterations();

  /**
   * The default number of iterations to perform.
   */
  protected int defaultNumberOfIterations() {
    return 10;
  }

  /**
   * Stump method for building the classifiers.
   *
   * @param data the training data to be used for generating the
   * bagged classifier.
   * @exception Exception if the classifier could not be built successfully
   */
  public void buildClassifier(Instances data) throws Exception {

    if (m_Classifier == null) {
      throw new Exception("A base classifier has not been specified!");
    }
    m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations);
  }

  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String iterations = Utils.getOption('I', options); if (iterations.length() != 0) { setNumIterations(Integer.parseInt(iterations)); } else { setNumIterations(defaultNumberOfIterations()); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 2]; int current = 0; options[current++] = "-I"; options[current++] = "" + getNumIterations(); System.arraycopy(superOptions, 0, options, current, superOptions.length); return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "The number of iterations to be performed."; } /** * Sets the number of bagging iterations */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the number of bagging iterations * * @return the maximum number of bagging iterations */ public int getNumIterations() { return m_NumIterations; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy