weka.classifiers.functions.supportVector.PolyKernel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-stable Show documentation
Show all versions of weka-stable Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This is the stable version. Apart from bugfixes, this version
does not receive any other updates.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* PolyKernel.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.functions.supportVector;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* The polynomial kernel : K(x, y) = <x, y>^p or
* K(x, y) = (<x, y>+1)^p
*
*
*
* Valid options are:
*
*
*
* -D
* Enables debugging output (if available) to be printed.
* (default: off)
*
*
*
* -C <num>
* The size of the cache (a prime number), 0 for full cache and
* -1 to turn it off.
* (default: 250007)
*
*
*
* -E <num>
* The Exponent to use.
* (default: 1.0)
*
*
*
* -L
* Use lower-order terms.
* (default: no)
*
*
*
*
* @author Eibe Frank ([email protected])
* @author Shane Legg ([email protected]) (sparse vector code)
* @author Stuart Inglis ([email protected]) (sparse vector code)
* @version $Revision: 14534 $
*/
public class PolyKernel extends CachedKernel {
/** for serialization */
static final long serialVersionUID = -321831645846363201L;
/** Use lower-order terms? */
protected boolean m_lowerOrder = false;
/** The exponent for the polynomial kernel. */
protected double m_exponent = 1.0;
/**
* default constructor - does nothing.
*/
public PolyKernel() {
super();
}
/**
* Creates a new PolyKernel
instance.
*
* @param data the training dataset used.
* @param cacheSize the size of the cache (a prime number)
* @param exponent the exponent to use
* @param lowerOrder whether to use lower-order terms
* @throws Exception if something goes wrong
*/
public PolyKernel(Instances data, int cacheSize, double exponent,
boolean lowerOrder) throws Exception {
super();
setCacheSize(cacheSize);
setExponent(exponent);
setUseLowerOrder(lowerOrder);
buildKernel(data);
}
/**
* Returns a string describing the kernel
*
* @return a description suitable for displaying in the explorer/experimenter
* gui
*/
@Override
public String globalInfo() {
return "The polynomial kernel : K(x, y) = ^p or K(x, y) = (+1)^p";
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2025 Weber Informatics LLC | Privacy Policy